Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 35, Problem 14P

(a)

To determine

The angle of refraction for the sound wave.

(a)

Expert Solution
Check Mark

Answer to Problem 14P

The angle of refraction for sound wave is 87.43° .

Explanation of Solution

Given info: The wavelength of sound wave is 589nm and angle of incidence is 13.0° .

The speed of sound in air at 20°C is 343.216m/s and speed of sound in water at 25°C is 1531m/s .

The expression for the Snell’s law is,

μ1sinθ1=μ2sinθ2

Here,

μ1 is the refractive index of sound in air.

θ1 is angle of incidence.

μ2 is refractive index of sound in water.

θ2 is the angle of refraction.

Rearrange the above formula to find θ2 .

μ1sinθ1=μ2sinθ2sinθ2=μ1μ2sinθ1θ2=sin1(μ1μ2sinθ1) (1)

The formula to calculate speed of sound in water is,

μ1μ2=v2v1 (2)

Here,

μ1 is the refractive index of sound in air.

μ2 is the refractive index of sound in water.

v1 is the speed of sound in air.

v2 is the speed of sound in water.

Substitute v2v1 for μ1μ2 in formula (1) as,

θ2=sin1(v2v1sinθ1)

Substitute 343.216m/s for v1 , 1531m/s for v2 , 13.0° for θ1 in the above formula as,

θ2=sin1(v2v1sinθ1)=sin1(1531m/s343.216m/ssin13°)=sin1(4.460×0.224)=87.43°

Conclusion:

Therefore, the angle of refraction for the sound wave is 87.43°

(b)

To determine

The wavelength of sound in water.

(b)

Expert Solution
Check Mark

Answer to Problem 14P

The wavelength of sound in water is 2627.38nm .

Explanation of Solution

Given info: The wavelength of sound wave is 589nm and angle of incidence is 13.0° .

The formula to calculate the wavelength is,

v1λ1=v2λ2

Here,

v1 is the speed of sound wave in air.

v2 is the speed of sound wave in water.

λ1 is the wavelength of sound wave in air.

λ2 is the wavelength of sound in water.

Rearrange the above formula to find λ2 as,

v1λ1=v2λ2λ2=v2v1λ1

Substitute 343.216m/s for v1 , 1531m/s for v2 , 589nm for λ1 in the above formula as,

λ2=v2v1λ1=1531m/s343.216m/s(589nm)=2627.38nm

Conclusion:

Therefore, the wavelength of sound in water is 2627.38nm

(c)

To determine

The angle of refraction.

(c)

Expert Solution
Check Mark

Answer to Problem 14P

The angle of refraction is 9.67° .

Explanation of Solution

Given info: The wavelength of sodium yellow light is 589nm and angle of incidence is 13.0° .

The formula to calculate the Snell’s law is,

μ1sinθ1=μ2sinθ2

Here,

μ1 is the refractive index for air.

θ1 is angle of incidence.

μ2 is refractive index for water.

θ2 is the angle of refraction.

Rearrange the above formula to find θ2 as,

μ1sinθ1=μ2sinθ2sinθ2=μ1μ2sinθ1θ2=sin1(μ1μ2sinθ1)

Substitute 1 for μ1 , 1.33 for μ2 , 13° for θ1 in the above formula as,

θ2=sin1(μ1μ2sinθ1)=sin1(11.33sin13°)=sin1(0.751×0.224)=9.67°

Conclusion:

Therefore, the angle of refraction is 9.67° .

(d)

To determine

The wavelength of light in water.

(d)

Expert Solution
Check Mark

Answer to Problem 14P

The wavelength of light in water is 442.85nm .

Explanation of Solution

Given info: The wavelength of sodium yellow light is 589nm and angle of incidence is 13.0° .

The formula to calculate the wavelength is,

μ2μ1=λ1λ2

Here,

μ1 is the refractive index of light in air.

μ2 is the refractive index of light in water.

λ1 is the wavelength of light in air.

λ2 is the wavelength of light in water.

Rearrange the above formula to find λ2 as,

μ2μ1=λ1λ2λ2=μ1μ2λ1

Substitute 1 for μ1 , 1.33 for μ2 , 589nm for λ1 in the above formula as,

λ2=μ1μ2λ1=11.33(589nm)=442.85nm

Conclusion:

Therefore, the wavelength of light in water is 442.85nm .

(e)

To determine

The behavior of sound and light waves.

(e)

Expert Solution
Check Mark

Answer to Problem 14P

The behavior of sound and light waves is that the sound waves speeds up when travelling from rarer medium to denser medium and light rays slows down.

Explanation of Solution

Given info: The wavelength of sodium yellow light is 589nm and angle of incidence is 13.0° .

The medium that has low refractive index with respect to another medium is called rarer medium and the medium that has high refractive index with respect to another medium is called denser medium.

From part (b) the wavelength of sound wave in water is larger than the wavelength of sound in air and from part (d) the wavelength of light in water is less than the wavelength of light in air.

The sound waves travelling from rarer to denser medium then the refracted sound waves bend away from the normal that the reason there is an increase in wavelength of sound waves.

The ray of light travelling from rarer to denser medium then the refracted rays bends towards the normal. So that’s the reason there is a decrease in the wavelength of light in water.

Conclusion:

Therefore, The behavior of sound and light waves is that the sound waves speeds up when travelling from rarer medium to denser medium and light rays slows down.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וח
No chatgpt pls will upvote
No chatgpt pls will upvote

Chapter 35 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax