41 through 52 GO 43, 51 SSM 47, 51 Reflection by thin layers . In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r 1 and r 2 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-2 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength λ in nanometers of the light as measured in air. Where λ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-42 Problems 41 through 52 n 1 n 2 n 3 Type L λ 51 1.40 1.46 1.75 min 210
41 through 52 GO 43, 51 SSM 47, 51 Reflection by thin layers . In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r 1 and r 2 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-2 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength λ in nanometers of the light as measured in air. Where λ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-42 Problems 41 through 52 n 1 n 2 n 3 Type L λ 51 1.40 1.46 1.75 min 210
41 through 52 GO 43, 51 SSM 47, 51 Reflection by thin layers. In Fig. 35-42, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) The waves of rays r1 and r2 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-2 refers to the indexes of refraction n1, n2, and n3, the type of interference, the thin-layer thickness L in nanometers, and the wavelength λ in nanometers of the light as measured in air. Where λ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.
Part A
(Figure 1) shows a bucket suspended from a cable by means of a small
pulley at C.
If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long.
Express your answer to three significant figures and include the appropriate units.
Figure
4 m
B
НА
x =
Value
Submit
Request Answer
Provide Feedback
<
1 of 1
T
1 m
Units
?
The particle in is in equilibrium and F4 = 165 lb.
Part A
Determine the magnitude of F1.
Express your answer in pounds to three significant figures.
ΑΣΦ
tvec
F₁ =
Submit
Request Answer
Part B
Determine the magnitude of F2.
Express your answer in pounds to three significant figures.
ΑΣΦ
It vec
F2 =
Submit
Request Answer
Part C
Determine the magnitude of F3.
Express your answer in pounds to three significant figures.
?
?
lb
lb
F₂
225 lb
135°
45°
30°
-60°-
The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an
unstretched length of 12 in. as shown in.
Part A
Determine the distance d to maintain equilibrium.
Express your answer in inches to three significant figures.
節
ΕΠΙ ΑΣΦ
d =
*k
J
vec
5
t
0
?
d
C
A
in.
12 in.
B
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.