Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3.5, Problem 38P
Program Plan Intro
Program Description: Purpose of problem is to obtain the solution
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A circle of radius r centered at the point (0,r) in the plane will intersect the y-axis at the origin and the point A=(0,2r), as pictured below. A line passes through the point A and the point C=(11/2,0) on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the
line, as 1 → ∞
A=(0,2r)
B
(0,0)
(a) The line through A and C has equation:
y=
2
117
x+27
(b) The x-coordinate of the point B is
4472
121,2
+4
40
(c) The y-coordinate of the point B is
+27
121
44
(d) The limit as r→ ∞ of the x-coordinate of B is
121
(if your answer is oo, write infinity).
1. Show that the vector field
F(x, y, z)
=
(2x sin ye³)ix² cos yj + (3xe³ +5)k
satisfies the necessary conditions for a conservative vector field, and find a potential function for
F.
i need help please
Chapter 3 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 3.1 - In Problems 1 through 16, a homogeneous...Ch. 3.1 - Prob. 2PCh. 3.1 - Prob. 3PCh. 3.1 - Prob. 4PCh. 3.1 - Prob. 5PCh. 3.1 - Prob. 6PCh. 3.1 - Prob. 7PCh. 3.1 - Prob. 8PCh. 3.1 - Prob. 9PCh. 3.1 - Prob. 10P
Ch. 3.1 - Prob. 11PCh. 3.1 - Prob. 12PCh. 3.1 - Prob. 13PCh. 3.1 - Prob. 14PCh. 3.1 - Prob. 15PCh. 3.1 - Prob. 16PCh. 3.1 - Prob. 17PCh. 3.1 - Prob. 18PCh. 3.1 - Prob. 19PCh. 3.1 - Prob. 20PCh. 3.1 - Prob. 21PCh. 3.1 - Prob. 22PCh. 3.1 - Prob. 23PCh. 3.1 - Prob. 24PCh. 3.1 - Prob. 25PCh. 3.1 - Prob. 26PCh. 3.1 - Prob. 27PCh. 3.1 - Prob. 28PCh. 3.1 - Prob. 29PCh. 3.1 - Prob. 30PCh. 3.1 - Prob. 31PCh. 3.1 - Let y1andy2 be two solutions of...Ch. 3.1 - Prob. 33PCh. 3.1 - Prob. 34PCh. 3.1 - Prob. 35PCh. 3.1 - Prob. 36PCh. 3.1 - Prob. 37PCh. 3.1 - Prob. 38PCh. 3.1 - Prob. 39PCh. 3.1 - Prob. 40PCh. 3.1 - Prob. 41PCh. 3.1 - Prob. 42PCh. 3.1 - Prob. 43PCh. 3.1 - Prob. 44PCh. 3.1 - Prob. 45PCh. 3.1 - Prob. 46PCh. 3.1 - Prob. 47PCh. 3.1 - Prob. 48PCh. 3.1 - Prob. 49PCh. 3.1 - Prob. 50PCh. 3.1 - Prob. 51PCh. 3.1 - Prob. 52PCh. 3.1 - Prob. 53PCh. 3.1 - Prob. 54PCh. 3.1 - Prob. 55PCh. 3.1 - Prob. 56PCh. 3.2 - Prob. 1PCh. 3.2 - Prob. 2PCh. 3.2 - Prob. 3PCh. 3.2 - Prob. 4PCh. 3.2 - Prob. 5PCh. 3.2 - Prob. 6PCh. 3.2 - Prob. 7PCh. 3.2 - Prob. 8PCh. 3.2 - Prob. 9PCh. 3.2 - Prob. 10PCh. 3.2 - Prob. 11PCh. 3.2 - Prob. 12PCh. 3.2 - Prob. 13PCh. 3.2 - Prob. 14PCh. 3.2 - Prob. 15PCh. 3.2 - Prob. 16PCh. 3.2 - Prob. 17PCh. 3.2 - Prob. 18PCh. 3.2 - Prob. 19PCh. 3.2 - Prob. 20PCh. 3.2 - Prob. 21PCh. 3.2 - Prob. 22PCh. 3.2 - Prob. 23PCh. 3.2 - Prob. 24PCh. 3.2 - Let Ly=y+py+qy. Suppose that y1 and y2 are two...Ch. 3.2 - Prob. 26PCh. 3.2 - Prob. 27PCh. 3.2 - Prob. 28PCh. 3.2 - Prob. 29PCh. 3.2 - Prob. 30PCh. 3.2 - Prob. 31PCh. 3.2 - Prob. 32PCh. 3.2 - Prob. 33PCh. 3.2 - Assume as known that the Vandermonde determinant...Ch. 3.2 - Prob. 35PCh. 3.2 - Prob. 36PCh. 3.2 - Prob. 37PCh. 3.2 - Prob. 38PCh. 3.2 - Prob. 39PCh. 3.2 - Prob. 40PCh. 3.2 - Prob. 41PCh. 3.2 - Prob. 42PCh. 3.2 - Prob. 43PCh. 3.2 - Prob. 44PCh. 3.3 - Find the general solutions of the differential...Ch. 3.3 - Prob. 2PCh. 3.3 - Prob. 3PCh. 3.3 - Prob. 4PCh. 3.3 - Prob. 5PCh. 3.3 - Prob. 6PCh. 3.3 - Prob. 7PCh. 3.3 - Prob. 8PCh. 3.3 - Prob. 9PCh. 3.3 - Prob. 10PCh. 3.3 - Prob. 11PCh. 3.3 - Prob. 12PCh. 3.3 - Prob. 13PCh. 3.3 - Prob. 14PCh. 3.3 - Prob. 15PCh. 3.3 - Prob. 16PCh. 3.3 - Prob. 17PCh. 3.3 - Prob. 18PCh. 3.3 - Prob. 19PCh. 3.3 - Prob. 20PCh. 3.3 - Prob. 21PCh. 3.3 - Prob. 22PCh. 3.3 - Prob. 23PCh. 3.3 - Prob. 24PCh. 3.3 - Prob. 25PCh. 3.3 - Prob. 26PCh. 3.3 - Prob. 27PCh. 3.3 - Prob. 28PCh. 3.3 - Prob. 29PCh. 3.3 - Prob. 30PCh. 3.3 - Prob. 31PCh. 3.3 - Prob. 32PCh. 3.3 - Prob. 33PCh. 3.3 - Prob. 34PCh. 3.3 - Prob. 35PCh. 3.3 - Prob. 36PCh. 3.3 - Find a function y (x ) such that y(4)(x)=y(3)(x)...Ch. 3.3 - Solve the initial value problem...Ch. 3.3 - Prob. 39PCh. 3.3 - Prob. 40PCh. 3.3 - Prob. 41PCh. 3.3 - Prob. 42PCh. 3.3 - Prob. 43PCh. 3.3 - Prob. 44PCh. 3.3 - Prob. 45PCh. 3.3 - Prob. 46PCh. 3.3 - Prob. 47PCh. 3.3 - Prob. 48PCh. 3.3 - Solve the initial value problem...Ch. 3.3 - Prob. 50PCh. 3.3 - Prob. 51PCh. 3.3 - Prob. 52PCh. 3.3 - Prob. 53PCh. 3.3 - Prob. 54PCh. 3.3 - Prob. 55PCh. 3.3 - Prob. 56PCh. 3.3 - Prob. 57PCh. 3.3 - Prob. 58PCh. 3.4 - Prob. 1PCh. 3.4 - Prob. 2PCh. 3.4 - Prob. 3PCh. 3.4 - Prob. 4PCh. 3.4 - Prob. 5PCh. 3.4 - Prob. 6PCh. 3.4 - Prob. 7PCh. 3.4 - Prob. 8PCh. 3.4 - Prob. 9PCh. 3.4 - Prob. 10PCh. 3.4 - Prob. 11PCh. 3.4 - Prob. 12PCh. 3.4 - Prob. 13PCh. 3.4 - Prob. 14PCh. 3.4 - Prob. 15PCh. 3.4 - Prob. 16PCh. 3.4 - Prob. 17PCh. 3.4 - Prob. 18PCh. 3.4 - Prob. 19PCh. 3.4 - Prob. 20PCh. 3.4 - Prob. 21PCh. 3.4 - Prob. 22PCh. 3.4 - Prob. 23PCh. 3.4 - Prob. 24PCh. 3.4 - Prob. 25PCh. 3.4 - Prob. 26PCh. 3.4 - Prob. 27PCh. 3.4 - Prob. 28PCh. 3.4 - Prob. 29PCh. 3.4 - Prob. 30PCh. 3.4 - Prob. 31PCh. 3.4 - Prob. 32PCh. 3.4 - Prob. 33PCh. 3.4 - Prob. 34PCh. 3.4 - Prob. 35PCh. 3.4 - Prob. 36PCh. 3.4 - Prob. 37PCh. 3.4 - Prob. 38PCh. 3.5 - In Problems 1 through 20, find a particular...Ch. 3.5 - Prob. 2PCh. 3.5 - Prob. 3PCh. 3.5 - Prob. 4PCh. 3.5 - Prob. 5PCh. 3.5 - Prob. 6PCh. 3.5 - Prob. 7PCh. 3.5 - Prob. 8PCh. 3.5 - Prob. 9PCh. 3.5 - Prob. 10PCh. 3.5 - Prob. 11PCh. 3.5 - Prob. 12PCh. 3.5 - Prob. 13PCh. 3.5 - Prob. 14PCh. 3.5 - Prob. 15PCh. 3.5 - Prob. 16PCh. 3.5 - Prob. 17PCh. 3.5 - Prob. 18PCh. 3.5 - Prob. 19PCh. 3.5 - Prob. 20PCh. 3.5 - Prob. 21PCh. 3.5 - Prob. 22PCh. 3.5 - Prob. 23PCh. 3.5 - Prob. 24PCh. 3.5 - Prob. 25PCh. 3.5 - Prob. 26PCh. 3.5 - Prob. 27PCh. 3.5 - Prob. 28PCh. 3.5 - Prob. 29PCh. 3.5 - Prob. 30PCh. 3.5 - Prob. 31PCh. 3.5 - Prob. 32PCh. 3.5 - Prob. 33PCh. 3.5 - Prob. 34PCh. 3.5 - Prob. 35PCh. 3.5 - Prob. 36PCh. 3.5 - Prob. 37PCh. 3.5 - Prob. 38PCh. 3.5 - Prob. 39PCh. 3.5 - Prob. 40PCh. 3.5 - Prob. 41PCh. 3.5 - Prob. 42PCh. 3.5 - Prob. 43PCh. 3.5 - Prob. 44PCh. 3.5 - Prob. 45PCh. 3.5 - Prob. 46PCh. 3.5 - Prob. 47PCh. 3.5 - Prob. 48PCh. 3.5 - Prob. 49PCh. 3.5 - Prob. 50PCh. 3.5 - Prob. 51PCh. 3.5 - Prob. 52PCh. 3.5 - Prob. 53PCh. 3.5 - Prob. 54PCh. 3.5 - Prob. 55PCh. 3.5 - Prob. 56PCh. 3.5 - You can verify by substitution that yc=c1x+c2x1 is...Ch. 3.5 - Prob. 58PCh. 3.5 - Prob. 59PCh. 3.5 - Prob. 60PCh. 3.5 - Prob. 61PCh. 3.5 - Prob. 62PCh. 3.5 - Prob. 63PCh. 3.5 - Prob. 64PCh. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.6 - Prob. 6PCh. 3.6 - Prob. 7PCh. 3.6 - Prob. 8PCh. 3.6 - Prob. 9PCh. 3.6 - Prob. 10PCh. 3.6 - Prob. 11PCh. 3.6 - Prob. 12PCh. 3.6 - Prob. 13PCh. 3.6 - Prob. 14PCh. 3.6 - Each of Problems 15 through 18 gives the...Ch. 3.6 - Prob. 16PCh. 3.6 - Prob. 17PCh. 3.6 - Prob. 18PCh. 3.6 - A mass weighing 100 lb (mass m=3.125 slugs in fps...Ch. 3.6 - Prob. 20PCh. 3.6 - Prob. 21PCh. 3.6 - Prob. 22PCh. 3.6 - Prob. 23PCh. 3.6 - A mass on a spring without damping is acted on by...Ch. 3.6 - Prob. 25PCh. 3.6 - Prob. 26PCh. 3.6 - Prob. 27PCh. 3.6 - Prob. 28PCh. 3.6 - Prob. 29PCh. 3.6 - Prob. 30PCh. 3.7 - Problems 1 through 6 deal with the RL circuit of...Ch. 3.7 - Problems 1 through 6 deal with the RL circuit of...Ch. 3.7 - Problems 1 through 6 deal with the RL circuit of...Ch. 3.7 - Problems 1 through 6 deal with the RL circuit of...Ch. 3.7 - Problems 1 through 6 deal with the RL circuit of...Ch. 3.7 - Problems 1 through 6 deal with the RL circuit of...Ch. 3.7 - Problems 7 through 10 deal with the RC circuit in...Ch. 3.7 - Problems 7 through 10 deal with the RC circuit in...Ch. 3.7 - Problems 7 through 10 deal with the RC circuit in...Ch. 3.7 - Problems 7 through 10 deal with the RC circuit in...Ch. 3.7 - In Problems 11 through 16, the parameters of an...Ch. 3.7 - In Problems 11 through 16, the parameters of an...Ch. 3.7 - In Problems 11 through 16, the parameters of an...Ch. 3.7 - In Problems 11 through 16, the parameters of an...Ch. 3.7 - In Problems 11 through 16, the parameters of an...Ch. 3.7 - In Problems 11 through 16, the parameters of an...Ch. 3.7 - In Problems 17 through 22, an RLC circuit with...Ch. 3.7 - In Problems 17 through 22, an RLC circuit with...Ch. 3.7 - In Problems 17 through 22, an RLC circuit with...Ch. 3.7 - In Problems 17 through 22, an RLC circuit with...Ch. 3.7 - In Problems 17 through 22, an RLC circuit with...Ch. 3.7 - In Problems 17 through 22, an RLC circuit with...Ch. 3.7 - Consider an LC circuit—that is, an RLC circuit...Ch. 3.7 - Prob. 24PCh. 3.7 - Prob. 25PCh. 3.8 - Prob. 1PCh. 3.8 - Prob. 2PCh. 3.8 - Prob. 3PCh. 3.8 - Prob. 4PCh. 3.8 - Prob. 5PCh. 3.8 - Prob. 6PCh. 3.8 - Prob. 7PCh. 3.8 - Prob. 8PCh. 3.8 - Prob. 9PCh. 3.8 - Prove that the eigenvalue problem...Ch. 3.8 - Prob. 11PCh. 3.8 - Prob. 12PCh. 3.8 - Prob. 13PCh. 3.8 - Prob. 14PCh. 3.8 - A uniform cantilever beam is fixed at x=0 and free...Ch. 3.8 - Suppose that a beam is fixed at its ends...Ch. 3.8 - For the simply supported beam whose deflection...Ch. 3.8 - A beam is fixed at its left end x=0 but is simply...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- 6. (i) Sketch the trace of the following curve on R², (t) = (sin(t), 3 sin(t)), tЄ [0, π]. [3 Marks] Total marks 10 (ii) Find the length of this curve. [7 Marks]arrow_forwardhelppparrow_forward7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward
- 6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forwardTotal marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forwardTotal marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forward
- Total marks 15 པ་ (i) Sketch the trace of the following curve on R2, (t) = (t2 cos(t), t² sin(t)), t = [0,2π]. [3 Marks] (ii) Find the length of this curve. (iii) [7 Marks] Give a parametric representation of a curve : [0, that has initial point (1,0), final point (0, 1) and the length √2. → R² [5 Marks] Turn over. MA-201: Page 4 of 5arrow_forwardTotal marks 15 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly your answer. [5 Marks] 6. (i) Sketch the trace of the following curve on R2, y(t) = (sin(t), 3 sin(t)), t = [0,π]. [3 Marks]arrow_forwardA ladder 25 feet long is leaning against the wall of a building. Initially, the foot of the ladder is 7 feet from the wall. The foot of the ladder begins to slide at a rate of 2 ft/sec, causing the top of the ladder to slide down the wall. The location of the foot of the ladder, its x coordinate, at time t seconds is given by x(t)=7+2t. wall y(1) 25 ft. ladder x(1) ground (a) Find the formula for the location of the top of the ladder, the y coordinate, as a function of time t. The formula for y(t)= √ 25² - (7+2t)² (b) The domain of t values for y(t) ranges from 0 (c) Calculate the average velocity of the top of the ladder on each of these time intervals (correct to three decimal places): . (Put your cursor in the box, click and a palette will come up to help you enter your symbolic answer.) time interval ave velocity [0,2] -0.766 [6,8] -3.225 time interval ave velocity -1.224 -9.798 [2,4] [8,9] (d) Find a time interval [a,9] so that the average velocity of the top of the ladder on this…arrow_forward
- Total marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forwardTotal marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning