Physics for Scientists and Engineers, Volume 2
10th Edition
ISBN: 9781337553582
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 48AP
(a)
To determine
The range of angles over which the visible light exits the right slanted surface due to dispersion in the material.
(b)
To determine
Why the work doesn’t proceed as planned.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction
for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable
with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air
interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air
is 1.
←cladding
-core
A 1.00-cm-thick by 4.00-cm-long glass plate is made up of two fused prisms. The top prism has an index of refraction of 1.486 and the bottom has an index of refraction of 1.878. A light ray is incident on the top face as shown in the figure to the right. The reflected ray A is completely linearly polarized. Determine the exit angle of this ray that pass through the prisms.
When (the light ray illustrated in Figure P35.22 passes through the glass block of index of refraction n= 1.50, it is shifted laterally by the distance d.(a) Find the value of d. (b) Find the time interval required for the light to pass through the glass block.
Chapter 34 Solutions
Physics for Scientists and Engineers, Volume 2
Ch. 34.3 - Prob. 34.1QQCh. 34.4 - If beam is the incoming beam in Figure 34.10b,...Ch. 34.4 - Light passes from a material with index of...Ch. 34.6 - In photography, lenses in a camera use refraction...Ch. 34.7 - Prob. 34.5QQCh. 34 - Prob. 1PCh. 34 - The Apollo 11 astronauts set up a panel of...Ch. 34 - As a result of his observations, Ole Roemer...Ch. 34 - A dance hall is built without pillars and with a...Ch. 34 - You are working for an optical research company...
Ch. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Two flat, rectangular mirrors, both perpendicular...Ch. 34 - Prob. 9PCh. 34 - A ray of light strikes a flat block of glass (n =...Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - A laser beam is incident at an angle of 30.0 from...Ch. 34 - A ray of light strikes the midpoint of one face of...Ch. 34 - When you look through a window, by what time...Ch. 34 - Light passes from air into flint glass at a...Ch. 34 - You have just installed a new bathroom in your...Ch. 34 - A triangular glass prism with apex angle 60.0 has...Ch. 34 - You are working at your university swimming...Ch. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - A submarine is 300 m horizontally from the shore...Ch. 34 - Prob. 23PCh. 34 - A light beam containing red and violet wavelengths...Ch. 34 - Prob. 25PCh. 34 - The speed of a water wave is described by v=gd,...Ch. 34 - For 589-nm light, calculate the critical angle for...Ch. 34 - Prob. 28PCh. 34 - A room contains air in which the speed of sound is...Ch. 34 - Prob. 30PCh. 34 - An optical fiber has an index of refraction n and...Ch. 34 - Consider a horizontal interface between air above...Ch. 34 - How many times will the incident beam in Figure...Ch. 34 - Consider a beam of light from the left entering a...Ch. 34 - Why is the following situation impossible? While...Ch. 34 - Prob. 36APCh. 34 - When light is incident normally on the interface...Ch. 34 - Refer to Problem 37 for its description of the...Ch. 34 - A light ray enters the atmosphere of the Earth and...Ch. 34 - A light ray enters the atmosphere of a planet and...Ch. 34 - Prob. 41APCh. 34 - Prob. 42APCh. 34 - Prob. 43APCh. 34 - Prob. 44APCh. 34 - Prob. 45APCh. 34 - As sunlight enters the Earths atmosphere, it...Ch. 34 - A ray of light passes from air into water. For its...Ch. 34 - Prob. 48APCh. 34 - Prob. 49APCh. 34 - Figure P34.50 shows a top view of a square...Ch. 34 - Prob. 51APCh. 34 - Prob. 52CPCh. 34 - Prob. 53CPCh. 34 - Pierre de Fermat (16011665) showed that whenever...Ch. 34 - Prob. 55CPCh. 34 - Suppose a luminous sphere of radius R1 (such as...Ch. 34 - Prob. 57CP
Knowledge Booster
Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardThe bottom of a glass bottom boat allows tourists to see the coral reefs in Australia. The indices of refraction are as follows: air(n=1), glass(n=1.55), water(n=1.330).If a light ray coming from above hits the glass at an angle of 60.0deg to the normal, what is the refracted angle (deg) inside the water?arrow_forwardStudents determine the refractive index of a substance by way of experiment. The students shine a laser in a piece of glass that is immersed in an unknown substance. They increase the angle of incidence until the light is only reflected (not transmitted to the outside substance) and record the critical angle as 63 degrees. The index of refraction of the known substance is 1.52. What is the index of refraction of the unknown substance that surrounds the glass? 63° n = 1.52 1.74 1.35 1.52 1.00arrow_forward
- The index of refraction of the core of a piece of fiber optic cable is 1.72. If the index of the surrounding cladding is 1.41, what is the critical angle for total internal reflection for a light ray in the core incident on the core-cladding interface? a 55.1° b 44.0⁰ c 49.6° d 60.6°arrow_forwardA ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of θ1 = 32.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle θ2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle θ1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle θ2 with the vertical. (a) Suppose that the second medium is water. What is the angle of refraction, θ2 (in degrees)? (Enter your answer to at least one decimal place.) (b) Suppose that the second medium is flint glass. What is the angle of refraction, θ2, in this case (in degrees)? (Enter your answer to at least one decimal place.) (c) Finally, suppose that the second medium is glycerine. What is the…arrow_forwardLight in air (n1 = 1.00) enters a liquid at an angle of incidence θ1 = 73.9° relative to the normal. The light transmitted through the liquid is refracted to an angle of θ2 = 35.2°. What is the index of refraction (n2) of the liquid?arrow_forward
- Using filters, a technician has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). He aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 46.1°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm (ii) ?500 nm (iii) ?650 nmarrow_forwardChoose the correct statement regarding light traveling in air and glass mediums. Assume that the angle of incidence is not perpendicular to the surface. Refractive index of air is nair=1.00029; refractive index of glass is nglass=1.517. For light traveling from glass to air, the ray becomes bent toward the normal. O Light travels at a slower speed in air than in glass. For light traveling from air to glass, the ray becomes bent away from the normal. O For light traveling from air to glass, the incidence angle is larger than the refraction angle. O For light traveling from glass to air, the refraction angle is smaller than the incidence angle. Submit Answer Tries 0/2 Post Discussion Send Feedbaclarrow_forwardA ray of light is incident upon a surface of a block of transparent material, as shown in the figure. The material outside the block (n₁ =1) is air. The block's material has an index of refraction n₂ 1.48. The angle of incidence 8₁ = 51.0 degrees. Note that this angle is measured relative to the surface normal (the dotted line perpendicular to the surface). What is the angle of reflection (0₁')? 0₁' = degrees Part of the ray is refracted upon entering the material. What is the angle of refraction within the material (0₂)? 0₂ = degrees What would the block's index of refraction need to become in order for the angle of refraction (02) to be 2 degrees less than what it was originally? New n₂ = n₁ n₂ 0₁' reflected ray refracted ray :0₂arrow_forward
- Using filters, a technician has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). She aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 45.8°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 (a) Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others? (b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm ° (ii) ?500 nm ° (iii) ?650 nm °arrow_forwardA light ray enters a material from air at at an angle of incidence of 30.0°. The ray continues traveling within the material at an angle of 23.0° to the normal. What is the critical angle for this material when it is surrounded by air? (nair = 1.0) 51.4° 48.4° 36.1° 53° O 54.2°arrow_forwardUsing filters, a technician has created a beam of light that consists of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). He aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 47.4°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 (a) Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others? 400 nm light is bent the most500 nm light is bent the most 650 nm light is bent the mostall colors are refracted alike (b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm ° (ii) ?500 nm ° (iii) ?650 nm °arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning