Physics for Scientists and Engineers, Volume 2
10th Edition
ISBN: 9781337553582
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 43AP
To determine
The relation between the emergent angle and n
, R
and L
.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degrees
A light ray in the core (n 1.40) of a cylindrical optical fiber travels at an angle Θ1 = 49.0° with respect to the axis of the fiber. A ray is transmitted through the cladding (n 1.20) and into the air. What angle Θ2 does the exiting ray make withthe outside surface of the cladding
A material having an index of refraction n is surrounded by vacuum and is in the shape of a quarter circle of radius R (as shown). A light ray parallel to the base of the material is incident from the left at a distance L above the base and emerges from the material at the angle θ. Determine an expression for θ in terms of n, R, and L.
Chapter 34 Solutions
Physics for Scientists and Engineers, Volume 2
Ch. 34.3 - Prob. 34.1QQCh. 34.4 - If beam is the incoming beam in Figure 34.10b,...Ch. 34.4 - Light passes from a material with index of...Ch. 34.6 - In photography, lenses in a camera use refraction...Ch. 34.7 - Prob. 34.5QQCh. 34 - Prob. 1PCh. 34 - The Apollo 11 astronauts set up a panel of...Ch. 34 - As a result of his observations, Ole Roemer...Ch. 34 - A dance hall is built without pillars and with a...Ch. 34 - You are working for an optical research company...
Ch. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Two flat, rectangular mirrors, both perpendicular...Ch. 34 - Prob. 9PCh. 34 - A ray of light strikes a flat block of glass (n =...Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - A laser beam is incident at an angle of 30.0 from...Ch. 34 - A ray of light strikes the midpoint of one face of...Ch. 34 - When you look through a window, by what time...Ch. 34 - Light passes from air into flint glass at a...Ch. 34 - You have just installed a new bathroom in your...Ch. 34 - A triangular glass prism with apex angle 60.0 has...Ch. 34 - You are working at your university swimming...Ch. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - A submarine is 300 m horizontally from the shore...Ch. 34 - Prob. 23PCh. 34 - A light beam containing red and violet wavelengths...Ch. 34 - Prob. 25PCh. 34 - The speed of a water wave is described by v=gd,...Ch. 34 - For 589-nm light, calculate the critical angle for...Ch. 34 - Prob. 28PCh. 34 - A room contains air in which the speed of sound is...Ch. 34 - Prob. 30PCh. 34 - An optical fiber has an index of refraction n and...Ch. 34 - Consider a horizontal interface between air above...Ch. 34 - How many times will the incident beam in Figure...Ch. 34 - Consider a beam of light from the left entering a...Ch. 34 - Why is the following situation impossible? While...Ch. 34 - Prob. 36APCh. 34 - When light is incident normally on the interface...Ch. 34 - Refer to Problem 37 for its description of the...Ch. 34 - A light ray enters the atmosphere of the Earth and...Ch. 34 - A light ray enters the atmosphere of a planet and...Ch. 34 - Prob. 41APCh. 34 - Prob. 42APCh. 34 - Prob. 43APCh. 34 - Prob. 44APCh. 34 - Prob. 45APCh. 34 - As sunlight enters the Earths atmosphere, it...Ch. 34 - A ray of light passes from air into water. For its...Ch. 34 - Prob. 48APCh. 34 - Prob. 49APCh. 34 - Figure P34.50 shows a top view of a square...Ch. 34 - Prob. 51APCh. 34 - Prob. 52CPCh. 34 - Prob. 53CPCh. 34 - Pierre de Fermat (16011665) showed that whenever...Ch. 34 - Prob. 55CPCh. 34 - Suppose a luminous sphere of radius R1 (such as...Ch. 34 - Prob. 57CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardLight is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardA light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forward
- A diamond in air is illuminated with white light. On one particular facet, the angle of incidence is 32.50°. Inside the diamond, red light (λ = 660.0 nm in vacuum) is refracted at 10.48° with respect to the normal; blue light (λ = 470.0 nm in vacuum) is refracted at 10.33°. What is the index of refraction for red light in diamond? What is the index of refraction for blue light in diamond? What is the ratio of the speed of red light to the speed of blue light in diamond?arrow_forwardA fish that is d=d= 2.6 m below the surface looks up and sees a woman fishing from the shore. Part (a) What angle of incidence (θ1θ1) does the ray from the person’s face make with the perpendicular to the water at the point where the ray enters? The angle of refraction (θ2θ2) between the ray in the water and the perpendicular to the water is 37.1°. Part (b) What is the height of the person’s head above the water? Assume the person is standing L=L= 3.2 m away from the point where the incident ray intersects the water.arrow_forwardA ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of θ1 = 32.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle θ2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle θ1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle θ2 with the vertical. (a) Suppose that the second medium is water. What is the angle of refraction, θ2 (in degrees)? (Enter your answer to at least one decimal place.) (b) Suppose that the second medium is flint glass. What is the angle of refraction, θ2, in this case (in degrees)? (Enter your answer to at least one decimal place.) (c) Finally, suppose that the second medium is glycerine. What is the…arrow_forward
- The light beam in Figure P22.43 strikes surface 2 at the criticalangle. Determine the angle of incidence, Θ1.arrow_forwardStudents determine the refractive index of a substance by way of experiment. The students shine a laser in a piece of glass that is immersed in an unknown substance. They increase the angle of incidence until the light is only reflected (not transmitted to the outside substance) and record the critical angle as 63 degrees. The index of refraction of the known substance is 1.52. What is the index of refraction of the unknown substance that surrounds the glass? 63° n = 1.52 1.74 1.35 1.52 1.00arrow_forwardAs shown in Figure P35.73, a light ray is incident normal to one face of a 30°-60°-90° block of flint glass (a prism) that is immersed in water. (a) Determine the exit angle θ3 of the ray.(b) A substance is dissolved in the water to increase the index of refraction n2. At what value of n2 does total internal reflection cease at point P?arrow_forward
- A ray of light is incident upon a surface of a block of transparent material, as shown in the figure. The material outside the block (n₁ =1) is air. The block's material has an index of refraction n₂ 1.48. The angle of incidence 8₁ = 51.0 degrees. Note that this angle is measured relative to the surface normal (the dotted line perpendicular to the surface). What is the angle of reflection (0₁')? 0₁' = degrees Part of the ray is refracted upon entering the material. What is the angle of refraction within the material (0₂)? 0₂ = degrees What would the block's index of refraction need to become in order for the angle of refraction (02) to be 2 degrees less than what it was originally? New n₂ = n₁ n₂ 0₁' reflected ray refracted ray :0₂arrow_forwardA beaker with a mirrored bottom is filled with a liquid whose index of refraction is nliq = 1.41. A light ray from air strikes the top surface of the liquid at an incident angle θin = 52.7° from the normal line to the liquid surface, as shown in the figure. What is the refraction angleθ3 of the light ray as it enters the liquid (in degrees; remember to use the scientific notation of numbers)?arrow_forwardThe drawing shows a ray of light traveling through three materials whose surfaces are parallel to each other. The refracted rays (but not the reflected rays) are shown as the light passes through each material. A ray of light strikes the a-b interface at a 50.0° angle of incidence. The index of refraction of material a is n₂ = 1.20. The angles of refraction in materials b and care, respectively, 42.7° and 60.7°. Find the indices of refraction in these two media. n = Number ne= Number i Units Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning