PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
10th Edition
ISBN: 9781337888547
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 34AP
Consider a beam of light from the left entering a prism of apex angle Φ as shown in Figure P34.34. Two angles of incidence, θ1, and θ3, are shown as Hell as two angles of refraction, θ2 and θ4. Show that Φ = θ1 + θ3.
Figure P34.34
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The light beam in Figure P22.43 strikes surface 2 at the criticalangle. Determine the angle of incidence, Θ1.
The drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.65. A ray of light is incident on the glass at
point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B?
Number
Units
30.0
The drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.69. A ray of light is incident
on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B?
A
30.0
Chapter 34 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
Ch. 34.3 - Prob. 34.1QQCh. 34.4 - If beam is the incoming beam in Figure 34.10b,...Ch. 34.4 - Light passes from a material with index of...Ch. 34.6 - In photography, lenses in a camera use refraction...Ch. 34.7 - Prob. 34.5QQCh. 34 - Prob. 1PCh. 34 - The Apollo 11 astronauts set up a panel of...Ch. 34 - As a result of his observations, Ole Roemer...Ch. 34 - A dance hall is built without pillars and with a...Ch. 34 - You are working for an optical research company...
Ch. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Two flat, rectangular mirrors, both perpendicular...Ch. 34 - Prob. 9PCh. 34 - A ray of light strikes a flat block of glass (n =...Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - A laser beam is incident at an angle of 30.0 from...Ch. 34 - A ray of light strikes the midpoint of one face of...Ch. 34 - When you look through a window, by what time...Ch. 34 - Light passes from air into flint glass at a...Ch. 34 - You have just installed a new bathroom in your...Ch. 34 - A triangular glass prism with apex angle 60.0 has...Ch. 34 - You are working at your university swimming...Ch. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - A submarine is 300 m horizontally from the shore...Ch. 34 - Prob. 23PCh. 34 - A light beam containing red and violet wavelengths...Ch. 34 - Prob. 25PCh. 34 - The speed of a water wave is described by v=gd,...Ch. 34 - For 589-nm light, calculate the critical angle for...Ch. 34 - Prob. 28PCh. 34 - A room contains air in which the speed of sound is...Ch. 34 - Prob. 30PCh. 34 - An optical fiber has an index of refraction n and...Ch. 34 - Consider a horizontal interface between air above...Ch. 34 - How many times will the incident beam in Figure...Ch. 34 - Consider a beam of light from the left entering a...Ch. 34 - Why is the following situation impossible? While...Ch. 34 - Prob. 36APCh. 34 - When light is incident normally on the interface...Ch. 34 - Refer to Problem 37 for its description of the...Ch. 34 - A light ray enters the atmosphere of the Earth and...Ch. 34 - A light ray enters the atmosphere of a planet and...Ch. 34 - Prob. 41APCh. 34 - Prob. 42APCh. 34 - Prob. 43APCh. 34 - Prob. 44APCh. 34 - Prob. 45APCh. 34 - As sunlight enters the Earths atmosphere, it...Ch. 34 - A ray of light passes from air into water. For its...Ch. 34 - Prob. 48APCh. 34 - Prob. 49APCh. 34 - Figure P34.50 shows a top view of a square...Ch. 34 - Prob. 51APCh. 34 - Prob. 52CPCh. 34 - Prob. 53CPCh. 34 - Pierre de Fermat (16011665) showed that whenever...Ch. 34 - Prob. 55CPCh. 34 - Suppose a luminous sphere of radius R1 (such as...Ch. 34 - Prob. 57CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forward34. Consider a beam of light from the left entering a prism of apex angle O as shown in Figure P34.34. Two angles of incidence, 0, and 0,, are shown as well as two angles of refraction, 0, and 0,. Show that O = 0, + 0g- 2 %D 2 3°arrow_forwardA ray of light is incident upon a surface of a block of transparent material, as shown in the figure. The material outside the block (n₁ =1) is air. The block's material has an index of refraction n₂ 1.48. The angle of incidence 8₁ = 51.0 degrees. Note that this angle is measured relative to the surface normal (the dotted line perpendicular to the surface). What is the angle of reflection (0₁')? 0₁' = degrees Part of the ray is refracted upon entering the material. What is the angle of refraction within the material (0₂)? 0₂ = degrees What would the block's index of refraction need to become in order for the angle of refraction (02) to be 2 degrees less than what it was originally? New n₂ = n₁ n₂ 0₁' reflected ray refracted ray :0₂arrow_forward
- The drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.59. A ray of light is incident on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B?arrow_forwardThe drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.59. A ray of light is incident on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B? Number i Units 30.0 A Barrow_forwardAs shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction ?2 for the light in the olive oil is 25.4°, determine the angle of incidence ?1 in air and the angle of refraction ?3 in water. The index of refraction for olive oil is 1.47. ?1 = ?3 =arrow_forward
- A fish that is d=d= 2.6 m below the surface looks up and sees a woman fishing from the shore. Part (a) What angle of incidence (θ1θ1) does the ray from the person’s face make with the perpendicular to the water at the point where the ray enters? The angle of refraction (θ2θ2) between the ray in the water and the perpendicular to the water is 37.1°. Part (b) What is the height of the person’s head above the water? Assume the person is standing L=L= 3.2 m away from the point where the incident ray intersects the water.arrow_forwardConsider a beam of light from the left entering a prism of apex angle Φ as shown. Two angles of incidence, θ1 and θ3, are shown as well as two angles of refraction, θ2 and θ4. Show that Φ = θ2 + θ3.arrow_forwardThe drawing shows a ray of light traveling through three materials whose surfaces are parallel to each other. The refracted rays (but not the reflected rays) are shown as the light passes through each material. A ray of light strikes the a-b interface at a 50.0° angle of incidence. The index of refraction of material a is n₂ = 1.20. The angles of refraction in materials b and care, respectively, 42.7° and 60.7°. Find the indices of refraction in these two media. n = Number ne= Number i Units Unitsarrow_forward
- As shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction ?2 for the light in the olive oil is 30.8°, determine the angle of incidence ?1 in air and the angle of refraction ?3 in water. The index of refraction for olive oil is 1.47. ?1 = ° ?2 = °arrow_forwardA ray of sunlight is passing from diamond into crown glass; the angle of incidence is 30.00°. The indices of refraction for the blue and red components of the ray are: blue (ndiamond = 2.444, ncrown glass = 1.531), and red (ndiamond = 2.410, ncrown glass = 1.520). Determine the angle between the refracted blue and red rays in the crown glass. %3D Additional Materials eBook 398 1,375 APR 21 étv MacBook Air 80 esc F5 F6 F7 F1 F2 F3 F4 #3 %$4 % & 1 2 3. 4 Y くOarrow_forwardAnswer no. 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY