
(i)
The net force exerted on the grain.
(i)

Answer to Problem 1OQ
Option (c) zero.
Explanation of Solution
According to the inverse square law of Newton, the force of gravity acting between any two objects are inversely proportional to the square of the separation between the object's centers. The light intensity pressure will also follow the inverse square law of Newton.
If the grain is moved to a distance
Conclusion:
Both the gravity force and intensity pressure on the grain will decrease so the net force on the grain will be zero. Therefore, option (c) is correct.
Both the gravity force and intensity pressure on the grain will decrease so the net force on the grain will be zero. Since it is given as net force is towards the sun. Therefore, option (a) is incorrect.
Both the gravity force and intensity pressure on the grain will decrease so the net force on the grain will be zero. Since it is given as net force is away from the Sun. Therefore, option (b) is incorrect.
Both the gravity force and intensity pressure on the grain will decrease so the net force on the grain will be zero. Since it is given that it is not possible to determine the net force without the mass of the grain. Therefore, option (d) is incorrect.
(ii)
The net force exerted on the grain.
(ii)

Answer to Problem 1OQ
Option (a) toward the Sun.
Explanation of Solution
According to the inverse square law of Newton, the force of gravity acting between any two objects is inversely proportional to the square of the separation distance between the object's centers.
The light intensity pressure will also follow inverse square law of Newton.
The smaller grain presents less face area and feels a smaller force due to light pressure. So, net force will be towards the Sun.
Conclusion:
The smaller grain presents less face area and feels a smaller force due to light pressure. Therefore, option (a) is correct.
The smaller grain presents less face area and feels a smaller force due to light pressure. Since it is given as net force is away from the Sun. Therefore, option (b) is incorrect.
The smaller grain presents less face area and feels a smaller force due to light pressure. Since it is given as net force is zero. Therefore, option (c) is incorrect.
The smaller grain presents less face area and feels a smaller force due to light pressure. Since it is given that it is not possible to determine the net force without the mass of the grain. Therefore, option (d) is incorrect.
Want to see more full solutions like this?
Chapter 34 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- How can I remember this Formula: p = m × v where m is in kg and v in Meter per second in the best way?arrow_forwardHow can I remember the Formula for the impulsearrow_forwardA Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius г (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.00 cm and that the wire along the axis has a diameter of 0.190 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.15 × 106 V/m. Use the equation 2πrlE = 9in to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. V Anode Cathodearrow_forward
- 3.77 is not the correct answer!arrow_forwardA I squar frame has sides that measure 2.45m when it is at rest. What is the area of the frame when it moves parellel to one of its diagonal with a m² speed of 0.86.c as indicated in the figure? >V.arrow_forwardAn astronent travels to a distant star with a speed of 0.44C relative to Earth. From the austronaut's point of view, the star is 420 ly from Earth. On the return trip, the astronent travels speed of 0.76c relative to Earth. What is the distance covered on the return trip, as measured by the astronant? your answer in light-years. with a Give ly.arrow_forward
- star by spaceship Sixus is about 9.00 ly from Earth. To preach the star in 15.04 (ship time), how fast must you travel? C.arrow_forwardIf light-bulb A is unscrewed, how will the brightness of bulbs B and C change, if at all? How does the current drawn by from the battery change?arrow_forwardCan someone help mearrow_forward
- Can someone help me with this thank youarrow_forward(a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





