Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 31P
To determine
The amplitude of the emf.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A flat coil of wire is used with an LC-tuned circuit as a receiving
antenna. The coil has a radius of 0.26 m and consists of 660
turns. The transmitted radio wave has a frequency of 1.1 MHz.
The magnetic field of the wave is parallel to the normal to the
coil and has a maximum value of 2.7 × 10-¹¹ T. Using Faraday's
law of electromagnetic induction and the fact that the
magnetic field changes from zero to its maximum value in one-
quarter of a wave period, find the magnitude of the average
emf induced in the antenna during this time.
Number
i
Units
<
A flat coil of wire is used with an LC-tuned circuit as a receiving antenna. The coil has a radius of 0.23 m and consists of 480 turns. The transmitted radio wave has a frequency of 1.3 MHz. The magnetic field of the wave is parallel to the normal to the coil and has a maximum value of 1.7 × 10-15 T. Using Faraday's law of electromagnetic induction and the fact that the magnetic field changes from zero to its maximum value in one-quarter of a wave period, find the magnitude of the average emf induced in the antenna during this time.
A 155-turn flat coil of wire, 32.5 cm in diameter, is acting as an antenna for FM radio at a frequency of 120 MHz. The propagation direction of the radio wave is parallel to the plane of the coil. The magnetic field oscillates perpendicularly to that plane and has a maximum strength of 0.95 × 10-12 T.
a) What is the intensity of the radio wave, in watts per square meter?
b) Find the average emf, in volts, that is induced in the coil during the quarter cycle as the magnetic varies in strength from zero to maximum.
c) If the radio receiver circuit contains an inductance of 2.6 μH, what capacitance, in farads, must it also contain for it to resonate at 120 MHz? Ignore damping.
Chapter 34 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 34.1 - Prob. 34.1QQCh. 34.3 - What is the phase difference between the...Ch. 34.3 - Prob. 34.3QQCh. 34.5 - Prob. 34.4QQCh. 34.6 - Prob. 34.5QQCh. 34.7 - Prob. 34.6QQCh. 34.7 - Prob. 34.7QQCh. 34 - Prob. 1OQCh. 34 - Prob. 2OQCh. 34 - Prob. 3OQ
Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A dish antenna with a diameter of 20.0 m receives (at normal incidence) a radio signal from a distant source, as shown in Figure P21.73. The radio signal is a continuous sinusoidal wave with amplitude Emax = 0.20 V/m. Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this Figure P21.73 wave? (b) What is the intensity of the radiation received by the antenna? (c) What is the power received by the antenna?arrow_forwardA dish antenna having a diameter of 20.0 m receives (at normal incidence) a radio signal from a distant source as shown in Figure P24.63. The radio signal is a continuous sinusoidal wave with amplitude Emax = 0.200 V/m. Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this wave? (b) What is the intensity of the radiation received by this antenna? (c) What is the power received by the antenna? (d) What force is exerted by the radio waves on the antenna? Figure P24.63arrow_forwardIn what range of electromagnetic radiation are the electromagnetic waves emitted by power lines in a country that uses 50-Hz ac current?arrow_forward
- A 200-turn flat coil of wire 30.0 cm in diameter acts as an antenna for FM radio at a frequency of 100 MHz. The magnetic field of the incoming electromagnetic wave is perpendicular to the coil and has a maximum strength of 1.001012T . (a) What power is incident on the coil? (b) What average emf is induced in the coil over one-fourth of a cycle? (c) If the radio receiver has an inductance of 2.50H, what capacitance must it have to resonate at 100 MHz?arrow_forwardAn automobile with a radio antenna 1.0 m long travels at 100.0 km/h in a location where theEarth’s horizontal magnetic field is 5.5105T . What is the maximum possible emf induced in the antenna due to this motion?arrow_forwardA thin conducting bar (60.0 cm long) aligned in the positive y direction is moving with velocity v=(1.25m/s)i in a region with a spatially uniform 0.400-T magnetic field directed at an angle of 36.0 above the xy plane. a. What is the magnitude of the emf induced along the length of the moving bar? b. Which end of the bar is positively charged?arrow_forward
- (a) The distance to Polaris, the North Star, is approximately 6.44 1018 m. If Polaris were to burn out today, how many wars would it take to see it disappear? (b) How long does it take sunlight to reach Earth? (c) How long does it take a microwave signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 105 km.)arrow_forwardA 60 MHz plane wave comes through a lossless dielectric medium with a relative dielectric value of x and a relative magnetic permeability of 1 at an angle of 30° to the air. What is the relative dielectric value x, given that full reflection has taken place? 1.96 4 2.25 3arrow_forwardA flat coil of wire is used with an LC-tuned circuit as a receiving antenna. The coil has a radius of 0.25 m and consists of 450 turns. The transmitted radio wave has a frequency of 1.2 MHz. The magnetic field of the wave is parallel to the normal to the coil and has a maximum value of 2.0X10 raise to power -13 T. Using Faraday’s law of electromagnetic induction and the fact that the magnetic field changes from zero to its maximum value in one-quarter of a wave period, find the magnitude of the average emf induced in the antenna during this time.arrow_forward
- A small helium-neon laser emits red visible light with a power of 5.40 mW in a beam of diameter 2.10 m. What is the average energy density associated with the electric field average energy density associated with the magnetic field, and the total energy contained in a 1.00 m length of the beam. The amplitutde of the electric field of the light is 1080 V/m and the amplittude of the magnetic field of the light is 3.61 x 10-6Tarrow_forwardA 1.60-m-long FM antenna is oriented parallel to theelectric field of an EM wave. How large must the electricfield be to produce a 1.00-mV (rms) voltage between the endsof the antenna? What is the rate of energy transport per m2?arrow_forwardConsider a 35 mW He-Ne laser beam with wavelength λ0 = 632.8 nm. The laser beam diameter is 1.0 mm. What are the maximum electric field amplitude, Emax, and the maximum magnetic induction amplitude, Bmax of the He-Ne laser beam in vacuum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY