Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 28P
(a)
To determine
The intensity of starlight at Earth.
(b)
To determine
The power of the starlight intercepted by the Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a bright star in our night sky. Assume its distance from Earth is 84.9 light-years (ly) and its power output is 4.00 × 1028 W, about 100 times that of the Sun. One light-year is the distance traveled by light through a vacuum in one year.
(a) Find the intensity of the starlight at the Earth.
W/m²
(b) Find the power of the starlight the Earth intercepts. (The radius of Earth is 6.38 x 106 m.)
MW
Consider a bright star in our night sky. Assume its distance from Earth is 86.3 light-years (ly) and its power output is
4.00 x 1028 W, about 100 times that of the Sun. One light-year is the distance traveled by light through a vacuum in one
year.
(a) Find the intensity of the starlight at the Earth.
W/m²
(b) Find the power of the starlight the Earth intercepts. (The radius of Earth is 6.38 x 106 m.)
MW
Need Help?
Read It
Consider a bright star in our night sky. Assume its distance from Earth is 47.7 light-years (ly) and its power output is 4.00 ✕ 1028 W, about 100 times that of the Sun. One light-year is the distance traveled by light through a vacuum in one year.
(b) Find the power of the starlight the Earth intercepts. (The radius of Earth is 6.38 ✕ 106 m.)
Chapter 34 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 34.1 - Prob. 34.1QQCh. 34.3 - What is the phase difference between the...Ch. 34.3 - Prob. 34.3QQCh. 34.5 - Prob. 34.4QQCh. 34.6 - Prob. 34.5QQCh. 34.7 - Prob. 34.6QQCh. 34.7 - Prob. 34.7QQCh. 34 - Prob. 1OQCh. 34 - Prob. 2OQCh. 34 - Prob. 3OQ
Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At what distance does a 100-W lightbulb produce the same intensity of light as a 75-W lightbulb produces 10 m away? (Assume both have the same efficiency for converting electrical energy in the circuit into emitted electromagnetic energy.)arrow_forwardIn what range of electromagnetic radiation are the electromagnetic waves emitted by power lines in a country that uses 50-Hz ac current?arrow_forwardA radio station broadcasts its radio waves with a power of 50,000 W. What would be the intensity of this signal if it is received on a planet orbiting Proxima Centuri, the closest star to our Sun, at 4.243 ly away?arrow_forward
- Asaparrow_forward28 Consider a bright star in our night sky. Assume its distance from Earth is 29.0 light-years (ly) and its power output is 4.00 x 104° w, about 100 times that of the Sun. One light-year is the distance traveled by light through a vacuum in one year. (a) Find the intensity of the starlight at the Earth. W/m? (b) Find the power of the starlight the Earth intercepts. (The radius of Earth is 6.38 × 10° m.) MW Need Help? Read Itarrow_forwardEstimate the average power output of the Sun, given that about 1350 W/m2 reaches the upper atmosphere of the Eartharrow_forward
- Consider a bright star in our night sky. Assume its distance from Earth is 82.9 light-years (ly) and its power output is 4.00 x 1028 w, about 100 times that of the Sun. (a) Find the intensity of the starlight at the Earth. |nw/m² (b) Find the power of the starlight the Earth intercepts. One light-year is the distance traveled by the light through a vacuum in one year. (The radius of Earth is 6.37 x 106 m.) MWarrow_forwardconsider a bright star in our sky. assume its distance from earth is 38.3 light-year (ly) and its power output is 4.00 * 10^28 W. about 100 times that of the sun. one light-year is the distance traveled by light through a vacuum in one year. a. find the intensity of the starlight at the earth. b. find the power of the starlight at the earth intercepts ( the radius of earth is 6.38 * 10^6 m .)arrow_forwardThe U.S. Food and Drug Administration limits the radiation leakage of microwave ovens to no more than 5.0 mW/cm2 at a distance of 2.0 in. A typical cell phone, which also transmits microwaves, has a peak output power of about 2.0 W. (a) Approximating the cell phone as a point source, calculate the radiation intensity of a cell phone at a distance of 2.0 in. How does the answer compare with the maximum allowable microwave oven leakage? (b) The distance from your ear to your brain is about 2 in. What would the radiation intensity in your brain be if you used a Bluetooth headset, keeping the phone in your pocket, 1.0 m away from your brain? Most headsets are so-called Class 2 devices with a maximum output power of 2.5 mW.arrow_forward
- In a particular city, electrical energy costs $0.13 per kilowatt-hour. (Round your answers, in dollars, to at least two decimal places.) (a) How much does it cost to operate an old-style incandescent 60.0-W light bulb continuously for 24 hours? $ ??? (b) A modern LED light bulb that emits as much visible light as a 60.0-W incandescent only draws 8.50 W of power. How much does it cost to operate this bulb for 24 hours? $ ??? (c) A particular electric oven requires a potential difference of 220 V and draws 20.0 A of current when operating. How much does it cost to operate the oven for 4.30 hours? $ ???arrow_forwardA 1.60-m-long FM antenna is oriented parallel to theelectric field of an EM wave. How large must the electricfield be to produce a 1.00-mV (rms) voltage between the endsof the antenna? What is the rate of energy transport per m2?arrow_forwardIn a particular area of the country, electrical energy costs $0.18 per kilowatt-hour. (Round your answers, in dollars, to at least two decimal places.) (a) How much does it cost to operate an old-style incandescent 60.0-W light bulb continuously for 24 hours? $ (b) A modern LED light bulb that emits as much visible light as a 60.0-W incandescent only draws 8.50 W of power. How much does it cost to operate this bulb for 24 hours? $ (c) A particular electric oven requires a potential difference of 220 V and draws 20.0 A of current when operating. How much does it cost to operate the oven for 3.90 hours? $arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY