Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 34, Problem 16P
To determine

The verification for E=Emaxcos(kxωt) and B=Bmaxcos(kxωt) being the solution to equations 34.15 and 34.16 respectively.

Expert Solution & Answer
Check Mark

Answer to Problem 16P

The verification for E=Emaxcos(kxωt) and B=Bmaxcos(kxωt) being the solution to equations 34.15 and 34.16 respectively is as stated below.

Explanation of Solution

The given equations are.

    E=Emaxcos(kxωt)                                                                                                 (I)

Here, E is the magnitude of electric field , Emax is the magnitude of the maximum electric field, k is the wave vector and ω is the angular frequency.

    B=Bmaxcos(kxωt)                                                                                               (II)

Here, B is the magnitude of magnetic field , Bmax is the magnitude of the maximum magnetic field.

Differentiate equation (I) partially twice with respect to x.

    Ex=Emaxsin(kxωt)(k)2Ex2=Emaxcos(kxωt)(k2)                                                                                (III)

Differentiate equation (I) partially twice with respect to t.

    Et=Emaxsin(kxωt)(ω)2Et2=Emaxcos(kxωt)(ω)2                                                                               (IV)

Differentiate equation (II) partially twice with respect to x.

    Bx=Bmaxsin(kxωt)(k)2Bx2=Bmaxcos(kxωt)(k2)                                                                                 (V)

Differentiate equation (II) partially twice with respect to t.

    Bt=Bmaxsin(kxωt)(ω)2Bt2=Bmaxcos(kxωt)(ω)2                                                                               (VI)

Divide equation (III) by equation (IV).

    2Ex22Et2=Emaxcos(kxωt)(k2)Emaxcos(kxωt)(ω)22Ex2=k2ω2(2Et2)                                                                          (VII)

Divide equation (V) by equation (VI).

    2Bx22Bt2=Bmaxcos(kxωt)(k2)Bmaxcos(kxωt)(ω)22Ex2=k2ω2(2Bt2)                                                                         (VIII)

Also,

    kω=μ0ε0                                                                                                              (IX)

Here, μ0 is the permeability of the medium and ε0 is the permittivity if the medium.

Substitute μ0ε0 for kω in equation (VII).

    2Ex2=(μ0ε0)2(2Et2)2Ex2=μ0ε0(2Et2)                                                                                           (X)

The equation 34.15 is ,

    2Ex2=μ0ε0(2Et2)                                                                                                 (XI)

Substitute μ0ε0 for kω in equation (VIII).

    2Bx2=(μ0ε0)2(2Bt2)2Bx2=μ0ε0(2Bt2)                                                                                          (XII)

The equation 34.16 is,

    2Bx2=μ0ε0(2Bt2)                                                                                              (XIII)

Conclusion:

Equation (X) is equal to equation (XI) and equation (XII) equals to equal (XIII).

Hence, verified.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.
An infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)
A small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?

Chapter 34 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning