Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33.2, Problem 33.1QQ
Consider the voltage phasor in Figure 32.4, shown at three instants of time. (i) Choose the part of the figure, (a), (b), or (c), that represents the instant of time at which the instantaneous value of the voltage has the largest magnitude. (ii) Choose the part of the figure that represents the instant of time at which the instantaneous value of the voltage has the smallest magnitude.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. For this circuit, R1 = 12.0 kΩ, R2 = 15.0 kΩ, R3 = 3.000 kΩ, C = 10.0 μF , and emf = 9.00 V. Find (d) the potential differance across R2. (e) the charge on the capacitor.
QI. A capacitor consists of two circular plates of radius a separated by a distance d
(assume d a.
(A)
Use Gauss' Law to find the electric field between the plates as a function
of time t, in terms of q(1), a, ɛ, and z. The vertical direction is the k direction.
(B)Now take an imaginary flat disc of radius r
The switch in the figure below is connected to position a for a long time interval. Att = 0, the switch is thrown to position b.
After this time, what are the following? (Let C = 1.40 µF.)
10.0 N
0.100 H
a
ll
S
+
'12.0 V
(a) the frequency of oscillation of the LC circuit
|425.5
Hz
(b) the maximum charge that appears on the capacitor
16.8
(c) the maximum current in the inductor
37.4
The energy stored in the inductor is a maximum when the current is a maximum. mA
Chapter 33 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 33.2 - Consider the voltage phasor in Figure 32.4, shown...Ch. 33.3 - Consider the AC circuit in Figure 32.8. The...Ch. 33.4 - Consider the AC circuit in Figure 32.11. The...Ch. 33.4 - Consider the AC circuit in Figure 32.12. The...Ch. 33.5 - Label each part of Figure 32.16, (a), (b), and...Ch. 33.6 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1OQCh. 33 - Prob. 2OQCh. 33 - Prob. 3OQ
Ch. 33 - Prob. 4OQCh. 33 - Prob. 5OQCh. 33 - Prob. 6OQCh. 33 - Prob. 7OQCh. 33 - A resistor, a capacitor, and an inductor are...Ch. 33 - Under what conditions is the impedance of a series...Ch. 33 - Prob. 10OQCh. 33 - Prob. 11OQCh. 33 - Prob. 12OQCh. 33 - Prob. 13OQCh. 33 - Prob. 1CQCh. 33 - Prob. 2CQCh. 33 - Prob. 3CQCh. 33 - Prob. 4CQCh. 33 - Prob. 5CQCh. 33 - Prob. 6CQCh. 33 - Prob. 7CQCh. 33 - Prob. 8CQCh. 33 - Prob. 9CQCh. 33 - Prob. 10CQCh. 33 - Prob. 1PCh. 33 - (a) What is the resistance of a lightbulb that...Ch. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - An AC source has an output rms voltage of 78.0 V...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - An AC source with an output rms voltage of 86.0 V...Ch. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - What is the maximum current in a 2.20-F capacitor...Ch. 33 - Prob. 24PCh. 33 - In addition to phasor diagrams showing voltages...Ch. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - A 60.0-ft resistor is connected in series with a...Ch. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - A series RLC circuit has a resistance of 45.0 and...Ch. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - An AC voltage of the form v = 90.0 sin 350t, where...Ch. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - A series RLC circuit has components with the...Ch. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - A 10.0- resistor, 10.0-mH inductor, and 100-F...Ch. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - The primary coil of a transformer has N1 = 350...Ch. 33 - A transmission line that has a resistance per unit...Ch. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Consider the RC highpass filter circuit shown in...Ch. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57APCh. 33 - Prob. 58APCh. 33 - Prob. 59APCh. 33 - Prob. 60APCh. 33 - Prob. 61APCh. 33 - Prob. 62APCh. 33 - Prob. 63APCh. 33 - Prob. 64APCh. 33 - Prob. 65APCh. 33 - Prob. 66APCh. 33 - Prob. 67APCh. 33 - Prob. 68APCh. 33 - Prob. 69APCh. 33 - (a) Sketch a graph of the phase angle for an RLC...Ch. 33 - Prob. 71APCh. 33 - Prob. 72APCh. 33 - A series RLC circuit contains the following...Ch. 33 - Prob. 74APCh. 33 - Prob. 75APCh. 33 - A series RLC circuit in which R = l.00 , L = 1.00...Ch. 33 - Prob. 77CPCh. 33 - Prob. 78CPCh. 33 - Prob. 79CPCh. 33 - Figure P33.80a shows a parallel RLC circuit. The...Ch. 33 - Prob. 81CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 40.0 g and electrical resistance 0.300 Ω rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 9.00 cm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of V = 5.00 V .The rod is placed in a vertical magnetic field. The rod begins to slide when the field reaches the value B = 0.131 T . Assume that the rod has a slightly flattened bottom so that it slides instead of rolling. Use 9.80 m/s^2 for the magnitude of the acceleration due to gravity. A) Find μ_s, the coefficient of static friction between the rod and the rails. Give the answer numericallyarrow_forwardQ (t) = 3e-0.7t sin() + 0.01 sin(4t) - 0.02 cos(4t) The function Q defined above models the electric charge, measured in coulombs, inside a lightbulb t seconds after it is turned on. Which of the following presents the method for finding the instantaneous rate of change of the lightbulb's electric charge, in coulombs per second, at time t = 4? Q" (4) = -0.213 A B C D Q'(4) = -0.171 Q(4) Q (0) 4-0 = 0.053 Q (4) = 0.194arrow_forwardAt position x=0 the voltage is 100V. At x=0.5m the voltage is 0V. What is the direction and strength of the average x-component of the electric field in that region?arrow_forward
- 7. a C R₂ Given E=12V, R₁-1002, R₂ = 1502 and C=1uF. a) The switch S has been on position a for a long period of time. Find the charge of the capacitor. b) Find the current through the ammeter 9.50 µs after S is thrown from position a to position b. c) After S is thrown from a to b, at what time, in us, does the charge on C become equal to 2.00 uCarrow_forwardThe capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. AV battery = 30 V, C = 3.0 F, and R = 2.0 2. At sometime after the switch is closed, the current in the circuit is measured to be 9.3 A. What is the charge on the capacitor at this time, in Coulomb? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where R = 14.0 Ω and C = 3.00 ×10^-6 F. The switch S is closed at t = 0. When the current in the circuit has magnitude 3.00 A, the charge on the capacitor is 40.0 × 10^−6 C. At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10^-6 C? When the current has magnitude 3.00 A, at what rate is energy being stored in the capacitor?arrow_forward
- #1. The capacitor in the figure is initially uncharged and the switch is at position c and not connected to either side of the circuit. At t = 0, the switch is flipped to position a for 20 ms,thenflipped back to position c for 10 ms, then flipped to position b for 20 ms, and finally flipped toposition c again. a) Using the Kirchhoff Voltage Law, write the differential equationsthat describethe circuit between t = 0 –20 ms andt = 30 –50 ms. b) Solve two differential equations you find ina) with appropriate initial condition to find the current through and the voltage across the capacitor as functions of time. c) Sketch the graphs of the current and voltage you find in b) from t = 0 to 60 ms. #2. Now the 40 uF capacitor in the circuit in #1 is replaced with a 0.4 H inductor. The inductor in this circuit is initially uncharged and the switch is at position c and not connected to either side of the circuit. At t = 0, the switch is flipped to position a for 20 ms, then flipped back to…arrow_forward4arrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rtorso, allowing the heart's normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 7.00 µF and e m f = 1270 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 795 V in 1.60 s. Ω (b) If the capacitor is then discharged across the patient's torso with Rtorso = 1230 Ω, calculate the voltage (in V) across the capacitor after 5.50 ms. Varrow_forward
- Questions are in the attachmentsarrow_forwardA 15000-ohm resistor and a 6-milliHenry inductor are connected in parallel. At = 0, this parallel combination is connected across a 2mA current source. Find the current flowing through the resistor at t = 1 microsecond after connecting the current source. Note: The shortcut formula we are using is for the current flowing through the inductor, not through the resistor. 1.836 milliAmpere 2 milliAmpere 0.164 milliAmpere O Amperearrow_forwardChapter 31, Problem 017 GO In the figure, R = 14.0 2, C = 6.87 uf, and L - 51.0 mH, and the ideal battery has emf = 31.0 V. The switch is kept in position a for a long time and then thrown to position b. What are the (a) frequency and (b) current amplitude of the resulting oscillations? (a) Number Units (b) Number Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY