Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 87P
To determine
The minimum viewing distance for the diffraction effect to work properly.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The limit to the eye's acuity is actually related to diffraction by the pupil. What is the angle between two just-resolvable points of
light for a 7.25 mm diameter pupil, assuming the average wavelength of 554 nm?
0.00534
O
angle between two points of light:
Take the result to be the practical limit for the eye. What is the greatest possible distance a car can be from a person if he or she
can resolve its two headlights, given they are 1.50 m apart?
greatest distance at which headlights can be distinguished:
m
1.61
Incorrect
What is the distance between two just-resolvable points held at an arm's length (0.900 m) from a person's eye?
0.145
distance between two points 0.900 m from a person's eye:
m
Incorrect
The limit to the eye’s visual acuity is related to diffraction by the pupil.Randomized VariablesD = 3.05 mmdh = 1.4 m
Part (a) What is the angle between two just-resolvable points of light for a 3.05 mm diameter pupil in radians, assuming an average wavelength of 550 nm?
Part (b) Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.4 m apart? Part (c) What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm?
A film of oil on water will appear dark when it is very thin,because the path length difference becomes small comparedwith the wavelength of light and there is a phase shift at thetop surface. If it becomes dark when the path lengthdifference is less than one-fourth the wavelength, what is thethickest the oil can be and appear dark at all visiblewavelengths? Oil has an index of refraction of 1.40.
Chapter 33 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10P
Ch. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Prob. 13PCh. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - Prob. 42PCh. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - Prob. 45PCh. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - Prob. 49PCh. 33 - Prob. 50PCh. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57PCh. 33 - Prob. 58PCh. 33 - Prob. 59PCh. 33 - Prob. 60PCh. 33 - Prob. 61PCh. 33 - Prob. 62PCh. 33 - Prob. 63PCh. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - Prob. 66PCh. 33 - Prob. 67PCh. 33 - Prob. 68PCh. 33 - Prob. 69PCh. 33 - Prob. 70PCh. 33 - Prob. 71PCh. 33 - Prob. 72PCh. 33 - Prob. 73PCh. 33 - Prob. 74PCh. 33 - Prob. 75PCh. 33 - Prob. 76PCh. 33 - Prob. 77PCh. 33 - Prob. 78PCh. 33 - Prob. 79PCh. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - Prob. 83PCh. 33 - Prob. 84PCh. 33 - Prob. 85PCh. 33 - Prob. 86PCh. 33 - Prob. 87P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardA film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an index of refraction of 1.40.arrow_forward
- To save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardWhat is the distance moved by the traveling mirror of a Michelson interferometer that corresponds to 1500 fringes passing by a point of the observation screen? Assume that the interferometer is illuminated with a 606 nm spectral line of krypton-86.arrow_forwardOn a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forward
- Consider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardIn a Michelson interferometer, light of wavelength 632.8 nm from a He-Ne laser is used. When one of the mirrors is moved by a distance D, 8 fringes move past the field of view. What is the value of the distance D?arrow_forward
- As a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardX-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of 25.5°. What is the spacing between the scattering planes in this crystal?arrow_forwardA film of soapy water (n=1.33) on top of a plastic cutting board has a thickness of 233 nm. What color is most strongly reflected if it is illuminated perpendicular to its surface?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY