Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 55P
(a)
To determine
The sketch of the phasor diagram for addition of three harmonic waves.
(b)
To determine
The intensity of light at the location from central maxima.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Coherent light of wavelength 501.5 nm is sent through two parallel slits in a large
flat wall. Each slit is 0.700 µm wide. Their centers are 2.80 µm apart. The light
then falls on a screen, with its axis at the midline between the slits.
(a) Predict the direction of each interference maximum on the screen, as an
6.
angle away from the bisector of the line joining the slits.
(b) Describe the pattern of light on the screen, specifying the number of bright
fringes and the location of each.
(c) Find the intensity of light on the screen at the center of each bright fringe,
expressed as a fraction of the light intensity Imax at the center of the pattern.
Light of wavelength λ = 580 nm is incident upon two thin slits that are separated by a distance d = 25 μm. The light hits a screen L = 1.5 m from the screen. It is observed that at a point y = 5.5 mm from the central maximum the intensity of the light is I = 55 W/m2.
What is the intensity of the light at the two slits (I0) in watts per square meter?
In a double-slit interference experiment, the light source is a visible laser with wavelength 4.31E-7 m, the distance between slits is 9.51E-4m, and a screen is 2.09 m away from the slits. What is the distance between the central bright fringe and a dark fringe resulting from a 5π phase difference between light from the two slits (in m)?
Chapter 33 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10P
Ch. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Prob. 13PCh. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - Prob. 42PCh. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - Prob. 45PCh. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - Prob. 49PCh. 33 - Prob. 50PCh. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57PCh. 33 - Prob. 58PCh. 33 - Prob. 59PCh. 33 - Prob. 60PCh. 33 - Prob. 61PCh. 33 - Prob. 62PCh. 33 - Prob. 63PCh. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - Prob. 66PCh. 33 - Prob. 67PCh. 33 - Prob. 68PCh. 33 - Prob. 69PCh. 33 - Prob. 70PCh. 33 - Prob. 71PCh. 33 - Prob. 72PCh. 33 - Prob. 73PCh. 33 - Prob. 74PCh. 33 - Prob. 75PCh. 33 - Prob. 76PCh. 33 - Prob. 77PCh. 33 - Prob. 78PCh. 33 - Prob. 79PCh. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - Prob. 83PCh. 33 - Prob. 84PCh. 33 - Prob. 85PCh. 33 - Prob. 86PCh. 33 - Prob. 87P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardConsider the single-slit diffraction pattern for =600 nm, D=0.025 mm , and x=2.0 m. Find the intensity in terms of Io at =0.5 , 1.0°, 1.5°, 3.0°, and 10.0°.arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forward
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardWhat is the angular width of the central fringe of the interference pattern of (a) 20 slits separated by d=2.0103 mm? (b) 50 slits with the same separation? Assume that =600 nm.arrow_forward
- A single slit of width 2100 nm is illuminated normally by a wave of wavelength 632.8 nm. Find the phase difference between waves from the top and one third from the bottom of the slit to a point on a screen at a horizontal distance of 2.0 m and vertical distance of 10.0 cm from the center.arrow_forwardUsing the result of the problem two problems prior, find the wavelength of light that produces fringes 7.50 mm apart on a screen 2.00 m from double slits separated by 0.120 mm.arrow_forwardCoherent light rays of wavelength strike a pair of slits separated by distance d at an angle 1, with respect to the normal to the plane containing the slits as shown in Figure P27.14. The rays leaving the slits make an angle 2 with respect to the normal, and an interference maximum is formed by those rays on a screen that is a great distance from the slits. Show that the angle 2 is given by 2=sin1(sin1md) where m is an integer.arrow_forward
- What is the separation between two slits for which 610-nm orange light has its first maximum at an angle of 30.0°?arrow_forwardThe interference pattern of a He-Ne laser light (=632.9nm) passing through two slits 0.031 mm apart is projected on a screen 10.0 m away. Determine the distance between the adjacent bright fringes.arrow_forwardAt what angle is the first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY