Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 72P
To determine
To prove
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An x-ray beam of a certain wavelength is incident on an NaCl crystal, at 30.0° to a certain family of reflecting planes of spacing 39.8 pm. If the reflection from those planes is of the first order, what is the wavelength of the x rays?
) Consider a crystal consisting of m + 1 lattice planes of spacing d, of total thickness t = md, being set for diffraction as depicted in Fig. 2. At the incidence angle ӨB, Braggs law is satisfied. Explain the phenomenon through which the angles Ө1 and Ө2 are the limiting angles at which the diffracted intensity falls to zero.
Please see attached question.
Chapter 33 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10P
Ch. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Prob. 13PCh. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - Prob. 42PCh. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - Prob. 45PCh. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - Prob. 49PCh. 33 - Prob. 50PCh. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57PCh. 33 - Prob. 58PCh. 33 - Prob. 59PCh. 33 - Prob. 60PCh. 33 - Prob. 61PCh. 33 - Prob. 62PCh. 33 - Prob. 63PCh. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - Prob. 66PCh. 33 - Prob. 67PCh. 33 - Prob. 68PCh. 33 - Prob. 69PCh. 33 - Prob. 70PCh. 33 - Prob. 71PCh. 33 - Prob. 72PCh. 33 - Prob. 73PCh. 33 - Prob. 74PCh. 33 - Prob. 75PCh. 33 - Prob. 76PCh. 33 - Prob. 77PCh. 33 - Prob. 78PCh. 33 - Prob. 79PCh. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - Prob. 83PCh. 33 - Prob. 84PCh. 33 - Prob. 85PCh. 33 - Prob. 86PCh. 33 - Prob. 87P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardAn X-ray scattering experiment is performed on a crystal whose atoms form planes separated by 0.440 nm. Using an X-ray source of wavelength 0.548 nm, what is the angle (with respect to the planes in question) at which the experimenter needs to illuminate the crystal in order to observe a first-order maximum?arrow_forward
- The first-order diffraction maximum is observed at 12.4° for a crystal having a spacing between planes of atoms of 0.285 nm. (a) What wavelength x-ray is used to observe this first-order pattern? nm (b) How many orders can be observed for this crystal at this wavelength? A leliarrow_forwardX ray diffraction in Potassium Chloride (KCl) results in a first order maximum when 97 pm wavelength X rays graze the crystal plane at 8.5 degrees. Find the spacing between crystal plane?arrow_forwardLight with a wavelength of 535 nm is incident on a diffraction grating and the diffraction pattern is displayed on a screen. Careful measurements show that 01 = 8.5° ± 1.9°. πΝσο Determine N. Also determine the uncertainty of N using the following formula: N = 180tan0₁ N = ON = lines/m lines/marrow_forward
- an x-ray beam of wavelengths from 95.0 to 140 pm is incident at u = 45.0° to a family of reflecting planes with spacing d= 275 pm.What are the (a) longest wavelength l and (b) associated order number m and the (c) shortest l and (d) associated m of the intensity maxima in the diffraction of the beam?arrow_forwardA third-order diffraction maximum is observed when a 0.862 Å X-ray beam is diffracted by the planes (111) of a copper crystal. The incident and diffracted beams form angles of 38.26° with the planes. Find the distance between adjacent (111) planes.arrow_forwardThe first-order diffraction maximum is observed at 12.6° for a crystal having a spacing between planes of atoms of 0.250 nm. (a) What wavelength x-ray is used to observe this first-order pattern? (b) How many orders can be observed for this crystal at this wavelength?arrow_forward
- X-ray diffraction in potassium chloride (KCI) results in a first- X rays graze the crys- tal plane at 8.5°. Find the spacing between crystal planes. order maximum when 97-pm-wavelengtharrow_forwardAn X-ray beam of a wavelength 0.15 nm is incident on an NaCl crystal, at 25° to reflecting planes of the crystal. If the first order reflections occurred in the spectrum, find the spacing of the reflecting planes of the crystal. (а) 0.18 pm (b) 0.35 nm (c) 0.18 nm (d) 0.35 pmarrow_forwardProblem 5: Consider light that has its third minimum at an angle of 24.4° when it falls on a single slit of width 3.55 µm . Randomized Variables e = 24.4 ° w = 3.55 µm Find the wavelength of the light in nanometers. 2 = 789 E AAL 4 |5 | 6 1| 2 sin() cos() tan() HOME cotan() asin() acos() atan() acotan() sinh() 3 cosh() tanh() cotanh() END O Degrees O Radians vol BACKSPACE DEL CLEAR Submit I give up! Hint Feedbackarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning