Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 48EAP
For your science fair project you need to design a diffraction grating that will disperse the visible spectrum (400-700 nm) over 30° in first order.
a. How many lines per millimeter does your grating need?
b. What is the first-order diffraction angle of light from a sodium lamp (
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
X rays of wavelength 0.0820 nm are scattered from the atoms of a crystal. The second-order maximum in the Bragg
reflection occurs when the angle is 20.5°. (Figure 1)
For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of X-ray diffraction.
Part A
What is the spacing between adjacent atomic planes in the crystal?
Express your answer in nanometers.
ΓΙ ΑΣΦ
d =
Submit
Previous Answers Request Answer
?
nm
The current that flows through a battery-powered flashlight, solar cells and fuel cells is called ____. A. AC B. DC C. LC D. RC
A beam of white light goes from air into the water droplet at an incidence angle of 36.2 degrees. What is the angle between the red (660 nm) and violet (410 nm) parts of the refracted light?A. 20O B. 21O C. 22O D. 23O
A magnetic field B= 0.6T is directed upward through a circular loop of diameter 7 cm and 500 turns. The loop is initiallyhorizontal, so it is perpendicular to the magnetic field. It rotates through a horizontal axis so that the plane of the loop is at 74° with the horizontal axis within 1 second. What is the magnitude of the induced emf? A. -18.18 V B. -15.3 V C. 16.4 V D. 17.6 V
A electron passes through a magnetic field at 60 to the field at a velocity of 3.5 × 106?/?. What is the magnitude of the force acting on the electron having a 0.45 T magnetic field? A. 2. 18 × 10−10 ? C. 2. 18 × 10−12 ? B. 2. 18 × 10−11 ? D. 2. 18 × 10−13 ?
A wire that…
a. At what angle will light moving from glass (ng=1.5) to air be completely
linearly polarized upon reflection? Describe the orientation of the
polarization.
b. At what incident angle(s) will light moving from glass to air undergo Total
Internal Reflection?
c. A beam of light having an irradiance of 100 W/m² is incident
perpendicularly to the glass-air interface Calculate the reflected irradiance.
Chapter 33 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 33 - Prob. 1CQCh. 33 - In a double-slit interference experiment, which of...Ch. 33 - FIGURE Q33.3 shows the viewing screen in a...Ch. 33 - FIGURE Q33.3 is the interference pattern seen on a...Ch. 33 - FIGURE Q33.5 shows the light intensity on a...Ch. 33 - FIGURE Q33.6 shows the light intensity on a...Ch. 33 - Narrow, bright fringes are observed on a screen...Ch. 33 - a. Green light shines through a 100-mm-diameter...Ch. 33 - A Michelson interferometer using 800 nm light is...Ch. 33 - Prob. 10CQ
Ch. 33 - Prob. 1EAPCh. 33 - Prob. 2EAPCh. 33 - Prob. 3EAPCh. 33 - Prob. 4EAPCh. 33 - Light of 630 nm wavelength illuminates two slits...Ch. 33 - Prob. 6EAPCh. 33 - Light from a sodium lamp (=589nm) illuminates two...Ch. 33 - A double-slit interference pattern is created by...Ch. 33 - Prob. 9EAPCh. 33 - Light of wavelength 620 nm illuminates a...Ch. 33 - A diffraction grating produces a first-order...Ch. 33 - Prob. 12EAPCh. 33 - The two most prominent wavelengths in the light...Ch. 33 - Prob. 14EAPCh. 33 - Prob. 15EAPCh. 33 - A helium-neon laser (=633nm) illuminates a single...Ch. 33 - Prob. 17EAPCh. 33 - A 050-mm-wide slit is illuminated by light of...Ch. 33 - 19. You need to use your cell phone, which...Ch. 33 - For what slit-width-to-wavelength ratio does the...Ch. 33 - Light from a helium-neon laser ( = 633 nm) is...Ch. 33 - A laser beam illuminates a single, narrow slit,...Ch. 33 - m-wide slits spaced 0.25 mm apart are illuminated...Ch. 33 - Prob. 24EAPCh. 33 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 33 - Prob. 26EAPCh. 33 - Prob. 27EAPCh. 33 - Your artist friend is designing an exhibit...Ch. 33 - Prob. 29EAPCh. 33 - Prob. 30EAPCh. 33 - Prob. 31EAPCh. 33 - A Michelson interferometer uses light from a...Ch. 33 - FIGURE P33.33 shows the light intensity on a...Ch. 33 - FIGURE P33.34 shows the light intensity en a...Ch. 33 - Prob. 35EAPCh. 33 - Prob. 36EAPCh. 33 - Prob. 37EAPCh. 33 - Prob. 38EAPCh. 33 - Prob. 39EAPCh. 33 - Prob. 40EAPCh. 33 - A triple-slit experiment consists of three narrow...Ch. 33 - Because sound is a wave, it’s possible to make a...Ch. 33 - A diffraction grating with 600 lines/mm is...Ch. 33 - Prob. 44EAPCh. 33 - Prob. 45EAPCh. 33 - A chemist identifies compounds by identifying...Ch. 33 - Prob. 47EAPCh. 33 - For your science fair project you need to design a...Ch. 33 - Prob. 49EAPCh. 33 - Prob. 50EAPCh. 33 - Light from a sodium lamp ( =589 nm) illuminates a...Ch. 33 - The wings of some beetles have closely spaced...Ch. 33 - Prob. 53EAPCh. 33 - Prob. 54EAPCh. 33 - A diffraction grating has slit spacing d. Fringes...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - A student performing a double-slit experiment is...Ch. 33 - Scientists shine a laser beam on a 35- m-wide...Ch. 33 - Light from a helium-neon laser ( =633 nm)...Ch. 33 - Prob. 62EAPCh. 33 - Prob. 63EAPCh. 33 - Prob. 64EAPCh. 33 - Scientists use laser range-finding to measure the...Ch. 33 - Prob. 66EAPCh. 33 - Prob. 67EAPCh. 33 - Prob. 68EAPCh. 33 - Prob. 69EAPCh. 33 - Prob. 70EAPCh. 33 - Prob. 71EAPCh. 33 - Prob. 72EAPCh. 33 - Prob. 73EAPCh. 33 - FIGURE CP33.74 shows light of wavelength ?...Ch. 33 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The hydrogen line at 1420.4 MHz corresponds to the natural frequency of neutral hydrogen atoms and plays an important role in radio astronomy. What size dish is required so that a radio telescope receives this frequency with an angular resolution of 0.0500?arrow_forwardA hunter at distance of 0.16 km aims to shoot two squirrels sitting 10 cm apart on the same branch of a tree. He claims he can do this without the help of a telescope sight on his rifle. The wavelength of light in a vacuum is 498 nm. Determine the diameter of the pupils of his eyes that would be required to resolve the squirrels as separate objects. O A.2.22 x 10-4 m B.5.32 x 10-4 m OC.6.81 x 10-4 m O D.9.54 x 10-4 marrow_forwardSuppose you are working in an optical fiber manufacturing company and asked by your supervisor to design a single mode optical fiber cable for communication purpose. You are given that the wavelength of light to be transmitted is 2 = 840 nm, the core refractive index is 1.48, and the cladding refractive index is 1.47. What is the core diameter of your optical fiber cable? O a. 0.7784 um O b. 0.9340 um O c. 1.872 µm O d. 3.736 um O e. 11.21 µmarrow_forward
- A light ray makes an angle a with the normal to a glass-water surface, as shown below. a. What is the minimum angle a for which the total internal reflection occurs at the glass-water interface? b. For what angle a is the reflected light totally polarized? What is the direction of the electric field in the reflected ray of light? Explain. c. Is the Brewster angle for red light the same as for green light? Explain. Glass # = 1.50 Water n = 1.33arrow_forwardB9arrow_forwarda. Polarized light is incident on 6 polarizing sheets. The axis of the first polarized sheet makes an angle ? with the plane of polarization. Each subsequent sheet has an axis that is rotated by an angle ? from that of adjacent sheets. Find ? if 45% of the incident intensity is transmitted by the sheets. b. Suppose you want to rotate the plane of polarization of a beam of polarized light by 77°, but you do not want the final intensity to be less than 85% of the initial intensity. What is the minimum number of polarizing sheets you must use? Assume that each sheet is rotated the same angle relative to the adjacent sheets. answer= ___________ sheetsarrow_forward
- How to solve this problemarrow_forwardThe hydrogen spectrum has a red line at 656 nm, and a blue line at 434 nm. What is the first order angular separation between the two spectral lines obtained with a diffraction grating with 5000 rulings/cn? a. 7.7° b. 16.6° c. 6.6° d. 3.2° e. 19.2°arrow_forwardProblem 2. A) A Michelson interferometer uses light of wavelength 500 nm. The irradiance of the beam exiting the laser is IL. What are the possible differences in the lengths of the arms of the interferometer when the irradiance at the detector is IL/3? B) Young's Double slit experiment is performed with HeNe laser wavelength 632.8 nm. The screen is 2 m from the slits and the slit separation is 0.2 mm. Find the distance of the 3th bright fringe from the center of the interference pattern on the screen (call the central bright fringe the "Oth" fringe).arrow_forward
- An advanced computer sends information to its various parts via infrared light pulses traveling through silicon fibers (n = 3.50). To acquire data from memory, the central processing unit sends a light-pulse request to the memory unit. The memory unit processes the request, then sends a data pulse back to the central processing unit. The memory unit takes 0.52 ns to process a request. Part A If the information has to be obtained from memory in 2.04 ns, what is the maximum distance the memory unit can be from the central processing unit? Express your answer in centimeters. d= 120 Puu (/V for Part A for Part Ando for Part redo for Part A reset for Part A keyboard shortcuts for Part A help for Part A Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining Provide Feedback cm Nexarrow_forward4arrow_forwardQ1: If the refractive indexes of the mica plate in the direction of the slow axis and the fast axis are as follows: n =1.5977, n1= 1.5936, Find the thickness of this plate needed to make the optical path difference between the two rays passing through the plate equal to a quarter of the wavelength if light of its wavelength was passed through A = 5890 nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY