Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 60EAP
Scientists shine a laser beam on a 35-
Hint: Use the trial-and-error technique demonstrated in Example 33.5 to solve the transcendental equation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Investigators measure the size of fog droplets using the diffraction of light. A camera records the diffraction pattern on a screen as the droplets pass in front of a laser, and a measurement of the size of the central maximum gives the droplet size. In one test, a 690 nm laser creates a pattern on a screen 30 cm from the droplets. If the central maximum of the pattern is 0.28 cm in diameter, how large is the droplet?
Diffraction can be used to provide a quick test of the size of red blood cells. Blood is smeared onto a slide, and a laser shines through the slide. The size of the cells is very consistent, so the multiple diffraction patterns overlap and produce an overall pattern that is similar to what a single cell would produce. Ideally, the diameter of a red blood cell should be between 7.5 and 8.0 μm. If a 633 nm laser shines through a slide and produces a pattern on a screen 24.0 cm distant, what range of sizes of the central maximum should be expected? Values outside this range might indicate a health concern and warrant further study.
Q1/ A/ Consider a resonator consisting of two concave spherical mirrors both with radius of curvature 4 m and separated by a distance of 1 m. Calculate the minimum beam diameter of the TEMy mode at the resonator center and on the mirrors when the laser oscillation is Art laser wavelength 2=514.5 nm. Then, Find if this cavity is stable or not. B/ One of the mirrors in A is replaced by a concave mirror of 1.5m radius of curvature, calculate the position of minimum beam radius. Then calculate the beam waist and radius of curvature at 150 cm from M1.
Chapter 33 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 33 - Prob. 1CQCh. 33 - In a double-slit interference experiment, which of...Ch. 33 - FIGURE Q33.3 shows the viewing screen in a...Ch. 33 - FIGURE Q33.3 is the interference pattern seen on a...Ch. 33 - FIGURE Q33.5 shows the light intensity on a...Ch. 33 - FIGURE Q33.6 shows the light intensity on a...Ch. 33 - Narrow, bright fringes are observed on a screen...Ch. 33 - a. Green light shines through a 100-mm-diameter...Ch. 33 - A Michelson interferometer using 800 nm light is...Ch. 33 - Prob. 10CQ
Ch. 33 - Prob. 1EAPCh. 33 - Prob. 2EAPCh. 33 - Prob. 3EAPCh. 33 - Prob. 4EAPCh. 33 - Light of 630 nm wavelength illuminates two slits...Ch. 33 - Prob. 6EAPCh. 33 - Light from a sodium lamp (=589nm) illuminates two...Ch. 33 - A double-slit interference pattern is created by...Ch. 33 - Prob. 9EAPCh. 33 - Light of wavelength 620 nm illuminates a...Ch. 33 - A diffraction grating produces a first-order...Ch. 33 - Prob. 12EAPCh. 33 - The two most prominent wavelengths in the light...Ch. 33 - Prob. 14EAPCh. 33 - Prob. 15EAPCh. 33 - A helium-neon laser (=633nm) illuminates a single...Ch. 33 - Prob. 17EAPCh. 33 - A 050-mm-wide slit is illuminated by light of...Ch. 33 - 19. You need to use your cell phone, which...Ch. 33 - For what slit-width-to-wavelength ratio does the...Ch. 33 - Light from a helium-neon laser ( = 633 nm) is...Ch. 33 - A laser beam illuminates a single, narrow slit,...Ch. 33 - m-wide slits spaced 0.25 mm apart are illuminated...Ch. 33 - Prob. 24EAPCh. 33 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 33 - Prob. 26EAPCh. 33 - Prob. 27EAPCh. 33 - Your artist friend is designing an exhibit...Ch. 33 - Prob. 29EAPCh. 33 - Prob. 30EAPCh. 33 - Prob. 31EAPCh. 33 - A Michelson interferometer uses light from a...Ch. 33 - FIGURE P33.33 shows the light intensity on a...Ch. 33 - FIGURE P33.34 shows the light intensity en a...Ch. 33 - Prob. 35EAPCh. 33 - Prob. 36EAPCh. 33 - Prob. 37EAPCh. 33 - Prob. 38EAPCh. 33 - Prob. 39EAPCh. 33 - Prob. 40EAPCh. 33 - A triple-slit experiment consists of three narrow...Ch. 33 - Because sound is a wave, it’s possible to make a...Ch. 33 - A diffraction grating with 600 lines/mm is...Ch. 33 - Prob. 44EAPCh. 33 - Prob. 45EAPCh. 33 - A chemist identifies compounds by identifying...Ch. 33 - Prob. 47EAPCh. 33 - For your science fair project you need to design a...Ch. 33 - Prob. 49EAPCh. 33 - Prob. 50EAPCh. 33 - Light from a sodium lamp ( =589 nm) illuminates a...Ch. 33 - The wings of some beetles have closely spaced...Ch. 33 - Prob. 53EAPCh. 33 - Prob. 54EAPCh. 33 - A diffraction grating has slit spacing d. Fringes...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - A student performing a double-slit experiment is...Ch. 33 - Scientists shine a laser beam on a 35- m-wide...Ch. 33 - Light from a helium-neon laser ( =633 nm)...Ch. 33 - Prob. 62EAPCh. 33 - Prob. 63EAPCh. 33 - Prob. 64EAPCh. 33 - Scientists use laser range-finding to measure the...Ch. 33 - Prob. 66EAPCh. 33 - Prob. 67EAPCh. 33 - Prob. 68EAPCh. 33 - Prob. 69EAPCh. 33 - Prob. 70EAPCh. 33 - Prob. 71EAPCh. 33 - Prob. 72EAPCh. 33 - Prob. 73EAPCh. 33 - FIGURE CP33.74 shows light of wavelength ?...Ch. 33 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the minimum angular spread of a 633-nm wavelength He-Ne laser beam that is originally 1.00 mm in diameter? (b) If this laser is aimed at a mountain cliff 15.0 km away, how big will the illuminated spot be? (c) How big a spot would be illuminated on the Moon, neglecting atmospheric effects? (This might be done to hit a corner reflector to measure the round-trip time and, hence, distance.) Explicitly show how you follow the steps in Problem-Solving Strategies for Wave Optics.arrow_forwardTable P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardWhen an x-ray beam is scattered off the planes of a crystal, the scattered beam creates an interference pattern. This phenomenon is called Bragg scattering. For an observer to measure an interference maximum, two conditions have to be satisfied: 1. The angle of incidence has to be equal to the angle of reflection. 2. The difference in the beam's path from a source to an observer for neighboring planes has to be equal to an integer multiple of the wavelength; that is, 2d sin(0) = mx for m = 1, 2, .... The path difference 2d sin(0) can be determined from the diagram (Figure 1). The second condition is known as the Bragg condition. Figure 1 of 1 d sine d sine Review nstants Part A An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal? Express your answer in nanometers to four significant figures. VE ΑΣΦ ? d = nm…arrow_forward
- Monochromatic X-rays are incident on a crystal. The first-order Bragg peak is observed when the angle of incidence is 34.0°. The crystal spacing is known to be 0.347 nm. What is the wavelength of the X rays?arrow_forwardA diffraction grating is used to view the spectrum of light from a helium discharge tube. The 3 brightest lines are red, yellow and blue in colour. In this spectrometer, the distance between the grating and the slit is 30.0 cm and the slit spacing in the grating is 1870 nm. Calculate the wavelength of spectral line C. What is the highest order of spectral line C that can be seen?arrow_forwardConsider a light wave passing through a slit and propagating toward a distant screen. Figure P37.53 shows the intensity variation for the pattern on the screen. Give a mathematical argument that more than 90% of the transmitted energy is in the central maximum of the diffraction pattern. Sugges- tion: You are not expected to calculate the precise percent- age, but explain the steps of your reasoning. You may use the identification 1 1 8 Imax asine -3T -27 -T 27 37 A Figure P37.53 ||arrow_forward
- 350 nm of light falls on a single slit of width 0.20 mm. What is the angular width of the central diffraction peak?arrow_forwardThe table contains data obtained during the single-slit microwave experiment with a slit width of 7 cm and a wavelength of 2.8 cm. To compare data like this with theory in Sec. 8.5, you will have to normalize both the intensity and the angular data. a) What is the normalized intensity I/I0 at 40∘? b)What is the normalized angle β/π at 25∘?arrow_forwardAngel is experimenting with a diffraction grating of unknown spacing. He is looking to determine the wavelength of the light in the emission spectrum of a gas and finds that a light having a known wavelength of 602.4nm is deflected by 42.1 ° away from the central maximum in the second order by this grating. Light of the wavelength to be measured is deflected by 45.7° away from the central maximum in the second order. What is the wavelength of this light in nanometers? Please give your answer as a whole number.arrow_forward
- Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, thin object, such as a strand of hair. In that case, a is the width of the strand. From actual lab measurements on a human hair, it was found that when a beam of light of wavelength 632.8nm was shone on a single strand of hair, and the diffracted light was viewed on a screen 1.25m away, the first dark fringes on either side of the central bright spot were 5.22cm apart. How thick was this strand of hair?arrow_forwardA transmission diffraction grating with 420 lines/mm is used to study the light intensity of different orders (n). A screen is located 2.8 m from the grating. What are the positions on the screen of the three brightest red lines for a hydrogen source?arrow_forwardNeed urgentarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY