FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 32P
To determine
To find:
What percentage of the initial intensity is transmitted by the system?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
82 In Fig. 33-70, unpolarized light
is sent into the system of three po-
larizing sheets, where the polarizing
directions of the first and third
sheets are at angles 6 = 30° (coun-
terclockwise) and 0z = 30° (clock-
wise). What fraction of the initial
light intensity emerges from the
system?
%3!
6 In Fig. 33-29, unpolarized light is
sent into a system of five polarizing
sheets. Their polarizing directions,
-x
measured counterclockwise from the
positive direction of the y axis, are the
following: sheet 1, 35°; sheet 2, 0°;
sheet 3, 0°; sheet 4, 110°; sheet 5, 45°.
Sheet 3 is then rotated 180° counter-
clockwise about the light ray. During
that rotation, at what angles (mea-
sured counterclockwise from the y
axis) is the transmission of light
through the system eliminated?
Figure 33-29 Question 6.
40 0 In Fig. 33-42, unpolarized light is sent into a system
of three polarizing sheets. The angles 61, 62, and 6, of the polariz-
ing directions are measured counterclockwise from the positive
direction of the y axis (they are not drawn to scale). Angles 0, and
0z are fixed, but angle 6, can be varied. Figure 33-44 gives the
intensity of the light emerging from sheet 3 as a function of 6.
(The scale of the intensity axis is not indicated.) What percentage
of the light's initial intensity is transmitted by the three-sheet
system when 0, = 90°?
0°
60°
120°
180°
Figure 33-44 Problem 40.
Chapter 33 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Knowledge Booster
Similar questions
- A linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forward1 82 I 9 Figure 33-42 y Xarrow_forward79 SSM (a) Prove that a ray of light incident on the surface of a sheet of plate glass of thickness t emerges from the opposite face parallel to its initial direction but displaced sideways, as in Fig. 33-69. (b) Show that, for small angles of incidence 0, this displacement is given by п - 1 x = te- п where n is the index of refraction of the glass and e is measured in radians. Figure 33-69 Problem 79.arrow_forward
- 03 02 0₁ y -X Figure 33-40 Problems 32 and 33.arrow_forward76 Go In Fig. 33-66, unpolarized light with an intensity of 25 W/m2 is sent into a system of four polarizing sheets with polarizing directions at angles = 40°, 2 - 20°, 0 = 20°, and 04 = 30°. What is the intensity of the light that emerges from the system? Figure 33-65 Pr %3! -X-arrow_forwardInitially unpolarized light is sent along the z-axis into a system of three polarizing sheets placed perpendicular to the z-axis and whose polarizing angles with respect to y-axis are 22º (first sheet), 89º (second sheet), and 56º (the last sheet). What percentage of the initial light intensity is transmitted by the system? Express your answer as a percentage, to at least one digit after the decimal.arrow_forward
- An electromagnetic wave from a wire antenna travels (from the reader) toward the plane of the paper. At time t = 0.0 s it strikes the paper at normal incidence. At point O and t = 0.0 s, the magnetic field vector has its maximum value, 5.01×10-8 T, pointing in the negative y-direction. The frequency of this wave is 1.17×106 Hz.What is the magnitude of the Poynting vector of the wave at time t = 0.0 s?arrow_forwardis 90°. 48 In Fig. 33-48a, a light ray in water is incident at angle on a boundary with an underlying material, into which some of the light refracts. There are two choices of underlying material. For each, the angle of refraction 02 versus the incident angle given in Fig. 33-48b. The vertical axis scale is set by 02 Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refraction of (c) material 1 and (d) material 2? Water (a) 0₂ 02s 0° 45° (b) Figure 33-48 Problem 48. 2 90° =arrow_forwardA beam of polarized light is sent into a system of two polarizing sheets. Relative to the polarization direction of that incident light, the polarizing directions of the sheets are at angles u for the first sheet and 90° for the second sheet. If 0.10 of the incident intensity is transmitted by the two sheets, what is u?arrow_forward
- A planar electromagnetic wave is propagating in the +x direction. At a certain point P and at a giveninstant, the electric field of the wave is given by = (0.082 V/m) . What is the Poynting vector at thepoint P at that instant? (c = 3.0 x 10^8 m/s, ?arrow_forwardAssuming that Eq. 37-36 holds, find how fast you would have to go through a red light to have it appear green. Take 620 nm as the wavelength of red light and 540 nm as the wavelength of green light.arrow_forward104 In Fig. 33-77, an albatross glides at a constant 15 m/s horizon- tally above level ground, moving in a vertical plane that contains the Sun. It glides toward a wall of height h = 2.0 m, which it will just barely clear. At that time of day, the angle of the Sun relative to the ground is Figure 33-77 Problem 104. e = 30°. At what speed does the shadow of the albatross move (a) across the level ground and then (b) up the wall? Suppose that later a hawk happens to glide along the same path, also at 15 m/s. You see that when its shadow reaches the wall, the speed of the shadow noticeably increases. (c) Is the Sun now higher or lower in the sky than when the alba- tross flew by earlier? (d) If the speed of the hawk's shadow on the wall is 45 m/s, what is the angle 0 of the Sun just then? Sunrayarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning