Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.3, Problem 22P
The springs BA and BC each have a stiffness of 500 N/m and an unstretched length of 3 m. Determine the horizontal force F applied to the cord which is attached to the small ring B so that the displacement of AB from the wall is d = 1.5 m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute the work done by the indicated force when the disk undergoes the specified displacement S=3m.
(assume the unstressed position is at X = 1.2 m)
X
2.5m
S = 3m
K = 120 N/m
F
The spring has a stiffness of 830 N/m and is undisturbed and measures 400 mm. Determine the forces on the BC and BD cables when the spring is stretched in the position shown in the figure.
The spring ABC has a stiffness of 500N/m and an unstretched length of 6m. Calculate the
horizontal force, F applied to the cord which is attached at B so that the displacement of
the pulley from the wall is d= 1.5m.
A
k = 500 N/m
6 m
F
k = 500 N/m
Fig. Q3
Force equation:
Force equation 3D
Moment 3D
Cosine rule
R - 4 +B-2AB cos e
F- Fi+Fj+Fk
Ff = F +F +F
moment about a point
M-rxF
Sine rule
F|
di+dj+dk
F F3
Fc
sin 4 sin B sinC
moment about an axis
M=rF
Force resultant
R-R
R +R
R.
8= tan
R
Chapter 3 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 3.3 - In each case, draw a free-body diagram of the ring...Ch. 3.3 - Write the two equations of equilibrium, Fx = 0 and...Ch. 3.3 - The crate has a weight of 550 lb. Determine the...Ch. 3.3 - The beam has a weight of 700 lb. Determine the...Ch. 3.3 - If the 5-kg block is suspended from the pulley B...Ch. 3.3 - The block has a mass of 5 kg and rests on the...Ch. 3.3 - If the mass of cylinder C is 40 kg, determine the...Ch. 3.3 - Determine the tension in cables AB, BC, and CD,...Ch. 3.3 - The members of a truss are pin connected at joint...Ch. 3.3 - The members of a truss are pin connected at joint...
Ch. 3.3 - Determine the magnitude and direction of F so...Ch. 3.3 - The bearing consists of rollers, symmetrically...Ch. 3.3 - The members of a truss are connected to the gusset...Ch. 3.3 - The gusset plate is subjected to the forces of...Ch. 3.3 - The man attempts to pull down the tree using the...Ch. 3.3 - The cords ABC and BD can each support a maximum...Ch. 3.3 - Determine the maximum force F that can be...Ch. 3.3 - The block has a weight of 20 lb and is being...Ch. 3.3 - Determine the maximum weight W of the block that...Ch. 3.3 - The lift sling is used to hoist a container having...Ch. 3.3 - A nuclear-reactor vessel has a weight of 500(103)...Ch. 3.3 - Determine the stretch in each spring for...Ch. 3.3 - The unstretched length of spring AB is 3 m. If the...Ch. 3.3 - Determine the mass of each of the two cylinders if...Ch. 3.3 - Determine the stiffness kT of the single spring...Ch. 3.3 - If the spring DB has an unstretched length of 2 m....Ch. 3.3 - Determine the unstretched length of DB to hold the...Ch. 3.3 - A vertical force P = 10 lb is applied to the ends...Ch. 3.3 - Determine the unstretched length of spring AC if a...Ch. 3.3 - The springs BA and BC each have a stiffness of 500...Ch. 3.3 - The springs BA and BC each nave a stiffness of 500...Ch. 3.3 - Determine the distances x and y for equilibrium if...Ch. 3.3 - Determine the magnitude of F1 and the distance y...Ch. 3.3 - The 30-kg pipe is supported at A by a system of...Ch. 3.3 - Each cord can sustain a maximum tension of 500 N....Ch. 3.3 - The streetlights A and B are suspended from the...Ch. 3.3 - Determine the tension developed in each cord...Ch. 3.3 - Prob. 30PCh. 3.3 - Prob. 31PCh. 3.3 - Prob. 32PCh. 3.3 - The lamp has a weight of 15 lb and is supported by...Ch. 3.3 - Each cord can sustain a maximum tension of 20 lb....Ch. 3.3 - Prob. 35PCh. 3.3 - Prob. 36PCh. 3.3 - Prob. 37PCh. 3.3 - Prob. 38PCh. 3.3 - The ball D has a mass of 20 kg. If a force of F =...Ch. 3.3 - The 200-lb uniform container is suspended by means...Ch. 3.3 - The single elastic cord ABC is used to support the...Ch. 3.3 - A scale is constructed with a 4-ft-long cord and...Ch. 3.3 - The concrete wall panel is hoisted into position...Ch. 3.3 - Prob. 2CPCh. 3.3 - Prob. 3CPCh. 3.3 - Prob. 4CPCh. 3.4 - Determine the magnitude of forces F1, F2, F3, so...Ch. 3.4 - Determine the tension developed in cables AB, AC,...Ch. 3.4 - Prob. 9FPCh. 3.4 - Prob. 10FPCh. 3.4 - Prob. 11FPCh. 3.4 - The three cables are used to support the 40-kg...Ch. 3.4 - Determine the magnitudes of F1, F2, and F3 for...Ch. 3.4 - If the bucket and its contents have a total weight...Ch. 3.4 - Determine the stretch in each of die two springs...Ch. 3.4 - Prob. 47PCh. 3.4 - Determine the tension in the cables in order to...Ch. 3.4 - Determine the maximum mass of the crate so that...Ch. 3.4 - Determine the force in each cable if F = 500 lb.Ch. 3.4 - Prob. 51PCh. 3.4 - Determine the tens on developed in cables AB and...Ch. 3.4 - If the tension developed in each cable cannot...Ch. 3.4 - Prob. 54PCh. 3.4 - Determine the maximum weight of the crate that can...Ch. 3.4 - The 25 kg flowerpot is supported at A by the three...Ch. 3.4 - If each cord can sustain a maximum tension of 50 N...Ch. 3.4 - Determine the tension developed m the three cables...Ch. 3.4 - Determine the tension developed in the three...Ch. 3.4 - Prob. 60PCh. 3.4 - Prob. 61PCh. 3.4 - If the maximum force in each rod con not exceed...Ch. 3.4 - Prob. 63PCh. 3.4 - If cable AD is tightened by a turnbuckle and...Ch. 3.4 - Prob. 65PCh. 3.4 - Prob. 66PCh. 3.4 - Determine the maximum weight of the crate so that...Ch. 3.4 - The pipe is held in place by the vise. If the bolt...Ch. 3.4 - Prob. 2RPCh. 3.4 - Prob. 3RPCh. 3.4 - Prob. 4RPCh. 3.4 - Prob. 5RPCh. 3.4 - Prob. 6RPCh. 3.4 - Determine the force in each cable needed to...Ch. 3.4 - If cable AB is subjected to a tension of 700 N,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The beam is loaded with a uniformly varying load 0 at point D and maximum of 7 kN/m at the fixed support. Determine the tension in the cable. D B 0.8 m 1.8 m 0.4 m 25 kNarrow_forwardIf the 20-mm-diameter rod is made of A-36 steel and the stiffness of the spring is k = 50 MN>m, determine the displacement of end A when the 60-kN force is applied.arrow_forwardAlso, determine the x-component of the force which the spring exerts on the pin. Express your answer in units of N.arrow_forward
- Problem 3: µs = 0.60 between wedges B and C and us = 0.40 between the surfaces B & A and C & D. If the spring is compressed 200 mm in the position shown, find the smallest force P required to move the wedge. Neglect the weight of the wedges. A 15° B D k = 500 N/m 15° 15° C Parrow_forwardThe tapered shaft is confined by the fixed supports at A and B. If a torque T is applied at its mid-point, determine the reactions at the supports.arrow_forwardthe uniform concrete pole has a mass of 25 tons and is slowly being lifted to a vertical position through the tension P in the cable. for position theta=60° calculate the tension T in the horizontal anchor cable 6 m 6 m 8 2m T Barrow_forward
- The support at A is a smooth pin and the support at B is a roller. Find all of the support reactions at A and B. Include the directionš of the supports as well. fom 400 N 100 N/m A B 4 m 4 marrow_forwardDetermine the Normal Forces at A and B and the tension in the cable. O 1400kg 0.6m 0.4m 0.6m 0.6m 500kgarrow_forward3-18. If the spring DB has an unstretched length of 2 m, determine the stiffness of the spring to hold the 40-kg crate in the position shown. 3-19. Determine the unstretched length of DB to hold the 40-kg crate in the position shown. Take k = 180 N/m. %3D -2 m- 3 m В 2 m www Aarrow_forward
- The bar of negligible weight is supported by two springs,each having a stiffness k = 80 N>m. If the springs are originally unstretched, and the force is vertical as shown,determine the angle theta the bar makes with the horizontal,when the 45-N force is applied to the bar. 1.5 m- 3 m C В 45 Narrow_forwardconsider the truss system, support b is settled downward for 10 mm. El = constant, a.determine the displacement and rotation at ВС b.the reaction force 2 m 2 marrow_forwardQ5/ Three cables are joined at the junction ring C. Determine the tensions in cables AC and BC caused by the weight of the 30-kg cylinder. A 45° 15° 30% 30 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license