College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 1TP
To determine
The statement that is true.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
14.
Determine the identity of X.
90 38 Sr + X
9039Y
A. A proton
B. A positron and a neutrino
C. An electron and an antineutrino
D. A neutron
Which should I choose and why
Write the letter corresponding to your correct answer.
Chapter 33 Solutions
College Physics
Ch. 33 - The total energy in the beam of an accelerator is...Ch. 33 - Synchrotron radiation takes energy from an...Ch. 33 - What two major limitations prevent us from...Ch. 33 - What are the advantages of collidingbeam...Ch. 33 - Large quanti?es of antimatter isolated from normal...Ch. 33 - Massless particles are not only neutral, they are...Ch. 33 - Massless particles must travel at the speed of...Ch. 33 - When a stat erupts in a supernova explosion, huge...Ch. 33 - Theorists have had spectacular success in...Ch. 33 - What lifetime do you expect for an antineutron...
Ch. 33 - Why does the meson have such a short lifetime...Ch. 33 - (a) Is a hadron always a baryon? (b) Is a baryon...Ch. 33 - Explain how conservation of baryon number is...Ch. 33 - The quark ?avor change it takes place in decay....Ch. 33 - Explain how the weak force can change strangeness...Ch. 33 - Beta decay is caused by the weak force, as are all...Ch. 33 - Why is it easier to see the properties of the c,...Ch. 33 - How can quarks, which are fermions, combine to...Ch. 33 - What evidence is cited is support the contention...Ch. 33 - Discuss how we know that (mesons are not...Ch. 33 - An antibaryon has three antiquarks with colors...Ch. 33 - Suppose leptons are created in a reaction. Does...Ch. 33 - How can the lifetime of a particle indicate that...Ch. 33 - (a) Do all particles having strangeness also have...Ch. 33 - The sigmazero particle decays mostly via the...Ch. 33 - What do the quark compositions and other quantum...Ch. 33 - Discuss the similarities and differences between...Ch. 33 - Identity evidence for electroweak unification.Ch. 33 - The quarks in a particle are con?ned, meaning...Ch. 33 - If a GUT is proven, and the four forces are...Ch. 33 - If the Higgs boson is discovered and found to have...Ch. 33 - Gluons and the photon are massless. Does this...Ch. 33 - A virtual particle having an approximate mass of...Ch. 33 - Calculate the mass in of a virtual carrier...Ch. 33 - Another component of the strong nuclear force is...Ch. 33 - (a) Find the ratio of the strengths the weak and...Ch. 33 - We ratio of the strong to the weak force and the...Ch. 33 - At full energy, protons in the 2.00kmdiameter...Ch. 33 - Suppose a W created in a bubble chamber lives for...Ch. 33 - What length track does a (+ traveling at 0.100 c...Ch. 33 - The 3.20kmlong SLAC produces a beam of 50.0GeV...Ch. 33 - Because of energy loss due to synchrotron...Ch. 33 - A proton and an antiproton collide headon, with...Ch. 33 - When an electron and positron collide at the SLAC...Ch. 33 - The is its own antiparticle and decays in the...Ch. 33 - The primary decay mode for the negative pion is...Ch. 33 - The mass of a theoretical particle that may be...Ch. 33 - The decay mode of the negative muon is (a) Find...Ch. 33 - The decay mode of the positive tau is (a) What...Ch. 33 - The principal decay mode at the sigma zero is (a)...Ch. 33 - (a) What is the uncertainty in the energy released...Ch. 33 - (a) What is the uncertainty in the energy released...Ch. 33 - (a) Verify from its quark composition that the...Ch. 33 - Accelerators such as the Triangle Universities...Ch. 33 - The reaction (described in the preceding problem)...Ch. 33 - One of the decay modes of the omega minus is (a)...Ch. 33 - Repeat the previous problem for the decay modeCh. 33 - One decay mode for the etazero meson is (a) Find...Ch. 33 - One decay mode for the etazero meson is (a) Write...Ch. 33 - Is the decay possible considering the appropriate...Ch. 33 - Is the decay possible considering the appropriate...Ch. 33 - (a) Is the decay possible considering the...Ch. 33 - (a) Is the decay possible considering the...Ch. 33 - The only combination of quark colors that produces...Ch. 33 - (a) Three quarks form a baryon. How many...Ch. 33 - (a) Show that the conjectured decay of the proton,...Ch. 33 - Verify the quantum numbers given for the + in...Ch. 33 - Verify the quantum numbers given for the proton...Ch. 33 - (a) How much energy would be released if the...Ch. 33 - (a) Find the charge, baryon number, strangeness,...Ch. 33 - There are particles called Dmesons. One of them is...Ch. 33 - There are particles called bottom mesons or...Ch. 33 - (a) What particle has the quark composition u-u-d?...Ch. 33 - (a) Show than all combinations of three quarks...Ch. 33 - Integrated Concepts The intensity of cosmic ray...Ch. 33 - Integrated Concepts Assuming conservation of...Ch. 33 - Integrated Concepts What is the wavelength of a...Ch. 33 - Integrated Concepts Calculate the relativistic...Ch. 33 - Integrated Concepts The primary decay mode for the...Ch. 33 - Integrated Concepts Plans for an accelerator that...Ch. 33 - Integrated Concepts Suppose you are designing a...Ch. 33 - Integrated Concepts In supernovas, neutrinos are...Ch. 33 - Construct Your Own Problem Consider an...Ch. 33 - Construct Your Own Problem Consider a detector...Ch. 33 - Prob. 1TPCh. 33 - Prob. 2TPCh. 33 - Prob. 3TPCh. 33 - Prob. 4TPCh. 33 - Prob. 5TPCh. 33 - Prob. 6TPCh. 33 - Prob. 7TPCh. 33 - Prob. 8TPCh. 33 - Prob. 9TPCh. 33 - Prob. 10TPCh. 33 - Prob. 11TPCh. 33 - Prob. 12TPCh. 33 - Prob. 13TPCh. 33 - Prob. 14TPCh. 33 - Prob. 15TPCh. 33 - Prob. 16TPCh. 33 - Prob. 17TPCh. 33 - Prob. 18TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An atom can be formed when a negative muon is captured by a proton. The muon has the same charge as the electron and a mass 207 times that of the electron. Calculate the frequency of the photon emitted when this atom makes the transition from n=2 to the n=1 state. Assume that the muon is orbiting a stationary proton.arrow_forward(a) What is the approximate force of gravity on a 70-kg person due to the Andromeda Galaxy, assuming its total mass is 1013 that of our Sun and acts like a single mass 0.613 Mpc away? (b) What is the ratio of this force to the person’s weight? Note that Andromeda is the closest large galaxy.arrow_forwardWhat is the Standard Model? Express your answer in terms of the four fundamental forces and exchange particles.arrow_forward
- A positron is an antimatter version of the electron, having exactly the same mass. When a positron and an electron meet, they annihilate, converting all of their mass into energy. (a) Find the energy released, assuming negligible kinetic energy before the annihilation. (b) If this energy is given to a proton in the form of kinetic energy, what is its velocity? (c) If this energy is given to another electron in the form of kinetic energy, what is its velocity?arrow_forwardIn supei novae, neutrinos are produced in huge amounts. They were detected from the 1987A supernova in the Magellanic Cloud, which is about 120,000 light- years away from Earth (relatively close to our Milky Way Galaxy). If neutrinos have a mass, they cannot travel at the speed of light, but if their mass is small, their velocity would be almost that of light, (a) Suppose a neutrino with a 7eV/c2mass has a kinetic energy of 700 keV. Find the relativistic quantity =11v2/c2for it. (b) If the neutrino leaves the 1987A supernova at the same time as a photon and both travel to Earth, how much sooner does the photon arrive? This is not a large time difference, given that it is impossible to know which neutrino left with which photon and the poor efficiency of the neutrino detectors. Thus, the fact that neutrinos were observed within hours of the brightening of the supernova only places an upper limit on the neutrino’s mass. (Hint: You may need to use a series expansion to find v for the neutrino, since its is so large.)arrow_forwardA hydrogen atom in an excited state can be ionized with less energy than when it is in its ground state. What is n for a hydrogen atom if 0.850 eV of energy can ionize it?arrow_forward
- (a) Calculate the approximate age of the universe from the average value of the Hubble constant, H0=20km/s . Mly. To do this, calculate the time it would take to travel 0.307 Mpc at a constant expansion rate of 20 km/s. (b) If somehow acceleration occurs, would the actual age of the universe be greater or less than that found here? Explain.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward(a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forward
- (a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forwardWe ratio of the strong to the weak force and the ratio of the strong force to the electromagnetic force become 1 under circumstances where they are unified. What are the ratios of the strong force to wage two forces under normal circumstances?arrow_forwardThe creation and study of new and very massive elementary particles is an important part of contemporary physics. To create a particle of mass M requires an energy Mc2 . With enough energy, an exotic particle can be created by allowing a fast-moving proton to collide with a similar target particle. Consider a perfectly inelastic collision between two protons: an incident proton with mass kinetic energy K, and momentum magnitude p joins with an originally stationary target proton to form a single product particle of mass M. Not all the kinetic energy of the incoming proton is available to create the product particle because conservation of momentum requires that the system as a whole still must have some kinetic energy after the collision. Therefore, only a fraction of the energy of the incident particle is available to create a new particle. (a) Show that the energy available to create a product particle is given by Mc2=2mpc21+K2mpc2 This result shows that when the kinetic energy K of the incident proton is large compared with its rest energy mpc2, 2then M approaches (2mpK)1/2/c. Therefore, if the energy of the incoming proton is increased by a factor of 9, the mass you can create increases only by a factor of 3, not by a factor of 9 as would be expected. (b) This problem can be alleviated by using colliding beams as is the case in most modern accelerators. Here the total momentum of a pair of interacting particles can be zero. The center of mass can be at rest after the collision, so, in principle, all the initial kinetic energy can be used for particle creation. Show that Mc2=2mc2(1+Kmc2) where K is the kinetic energy of each of the two identical colliding particles. Here, if k mc2, we have M directly proportional to K as we would desire.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning