Concept explainers
The total energy in the beam of an accelerator is far greater than the energy of the individual beam particles. Why isn't this total energy available to create a single extremely massive particle?
Why isn't total energy available to create a single extremely massive particle?
Answer to Problem 1CQ
Einstein has stated in his theory that any particle having mass cannot travel more than the speed of light without its mass becoming infinite. The particle accelerator accelerates the particle close to speed of light.
Explanation of Solution
The energy supplied to the particle is given by the formula:
Here,
Einstein has stated in his theory that any particle having mass cannot travel more than the speed of light without its mass becoming infinite. The particle accelerator accelerates the particle close to speed of light.
Since the energy supplied is finite, to increase the speed of the particle its mass should be small. Therefore, a beam of particles having very small individual mass are accelerated in the particle accelerator.
Conclusion:
The energy supplied to the particle is given by the formula:
Here,
Want to see more full solutions like this?
Chapter 33 Solutions
College Physics
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
College Physics: A Strategic Approach (3rd Edition)
Organic Chemistry (8th Edition)
Introductory Chemistry (6th Edition)
Biology: Life on Earth (11th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- 3. A measurement taken from the UW Jacobson Observatory (Latitude: 47.660503°, Longitude: -122.309424°, Altitude: 220.00 feet) when its local sidereal time is 120.00° makes the following observations of a space object (Based on Curtis Problems 5.12 + 5.13): Azimuth: 225.00° Azimuth rate: 2.0000°/s. Elevation: 75.000° Elevation rate: -0.5000°/s Range: 1500.0 km Range rate: -1.0000 km/s a. What are the r & v vectors (the state vector) in geocentric coordinates? (Answer r = [-2503.47 v = [17.298 4885.2 5.920 5577.6] -2.663]) b. Calculate the orbital elements of the satellite. (For your thoughts: what type of object would this be?) (Partial Answer e = 5.5876, 0=-13.74°) Tip: use Curtis algorithms 5.4 and 4.2.arrow_forwardConsider an isotope with an atomic number of (2(5+4)) and a mass number of (4(5+4)+2). Using the atomic masses given in the attached table, calculate the binding energy per nucleon for this isotope. Give your answer in MeV/nucleon and with 4 significant figures.arrow_forwardA: VR= 2.4 cm (0.1 V/cm) = 0.24 V What do Vector B an C represent and what are their magnitudesarrow_forward
- 4. Consider a cubesat that got deployed below the ISS and achieved a circular orbit of 410 km altitude with an inclination of 51.600°. What is the spacing, in kilometers, between successive ground tracks at the equator: a. Ignoring J2 (Earth's oblateness) effects b. Accounting for J2 effects c. Compare the two results and comment [Partial Answer: 35.7km difference]arrow_forwardplease solve and explainarrow_forwardTwo ice skaters, both of mass 68 kgkg, approach on parallel paths 1.6 mm apart. Both are moving at 3.0 m/sm/s with their arms outstretched. They join hands as they pass, still maintaining their 1.6 mm separation, and begin rotating about one another. Treat the skaters as particles with regard to their rotational inertia. a) What is their common angular speed after joining hands? Express your answer in radians per second. b) Calculate the change in kinetic energy for the process described in a). Express your answer with the appropriate units. c) If they now pull on each other’s hands, reducing their radius to half its original value, what is their common angular speed after reducing their radius? Express your answer in radians per second. d) Calculate the change in kinetic energy for the process described in part c). Express your answer with the appropriate units.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax