Concept explainers
Later High School Graduates This is a continuation of Exercise 16. The following table shows the number, in millions, graduating from high school in the United States in the given year.
Year | Number graduating (in millions) |
|
|
|
|
|
|
|
|
a. Find the slope of the linear function modeling high school graduations, and explain in practical terms the meaning of the slope.
b. Find a formula for a linear function that models these data.
c. Express, using functional notation, the number graduating from high school in 2008, and then calculate the value.
d. The actual number graduating from high school in 1994 was about 2.52 million. Compare this with the value given by the formula in part b and with your answer to part of Exercise 16. Which is closer to the actual value? In general terms, what was the trend in high school graduations from 1985 to 2007?
16. High School Graduates The following table shows the number, in millions, graduating from high school in the United States in the given year.16
Year | Number graduating (in millions) |
|
|
|
|
|
|
|
|
a. By calculating difference, show that these data can be modeled using a linear function.
b. What is the slope for the linear function modeling high school graduations? Explain in practical terms the meaning of the slope.
c. Find a formula for a linear function that models these data.
d. Express, using functional notation, the number graduating from high school in 1994, and then use your formula from part c to calculate that value.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
FUNCTIONS+CHANGE -WEBASSIGN
Additional Math Textbook Solutions
Intro Stats, Books a la Carte Edition (5th Edition)
Elementary & Intermediate Algebra
Elementary Statistics (13th Edition)
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Elementary Statistics: Picturing the World (7th Edition)
- (c) Let A = -1 3 -4 12 3 3 -9 (i) Find bases for row(A), col(A) and N(A). (ii) Determine the rank and nullity of A, and verify that the Rank-Nullity Theorem holds for the above matrix A.arrow_forward-(0)-(0)-(0) X1 = x2 = x3 = 1 (a) Show that the vectors X1, X2, X3 form a basis for R³. y= (b) Find the coordinate vector [y] B of y in the basis B = (x1, x2, x3).arrow_forwardLet A 1 - 13 (1³ ³) 3). (i) Compute A2, A3, A4. (ii) Show that A is invertible and find A-¹.arrow_forward
- Let H = {(a a12 a21 a22, | a1 + a2 = 0} . € R²x²: a11 + a22 (i) Show that H is a subspace of R2×2 (ii) Find a basis of H and determine dim H.arrow_forward2 5 A=1 2 -2 b=2 3 1 -1 3 (a) Calculate det(A). (b) Using (a), deduce that the system Ax = b where x = (x1, x2, x3) is consistent and determine x2 using Cramer's rule.arrow_forwardConsider the least squares problem Ax = b, where 12 -09-0 A 1 3 1 4 and b = (a) Write down the corresponding normal equations. (b) Determine the set of least squares solutions to the problem.arrow_forward
- The function f(x) is represented by the equation, f(x) = x³ + 8x² + x − 42. Part A: Does f(x) have zeros located at -7, 2, -3? Explain without using technology and show all work. Part B: Describe the end behavior of f(x) without using technology.arrow_forwardHow does the graph of f(x) = (x − 9)4 – 3 compare to the parent function g(x) = x²?arrow_forwardFind the x-intercepts and the y-intercept of the graph of f(x) = (x − 5)(x − 2)(x − 1) without using technology. Show all work.arrow_forward
- In a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020. Part A: Find the vertex of V(x). Show all work. Part B: Interpret what the vertex means in terms of the value of the home.arrow_forwardShow all work to solve 3x² + 5x - 2 = 0.arrow_forwardTwo functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it. f(x) h(x) 21 5 4+ 3 f(x) = −2(x − 4)² +2 + -5 -4-3-2-1 1 2 3 4 5 -1 -2 -3 5arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning