Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 32.1, Problem 32.1CE
To calculate the magnetic flux through the rectangular loop in Figure 32.2, we used the cross-sectional area A of the solenoid in ΦB = BA (Eq. 32.1). Why didn’t we use the area of the rectangular loop?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can someone help ASAP?
An electric field is restricted to a circular area of diameter d = 11.0 cm as shown in the figure. At the instant shown, the field direction is out of the page, its magnitude is 300 V/m, and its magnitude is increasing at a rate of 22.0 V/(m · s).
What is the direction (upwards or downwards) of the magnetic field at the point P, r= 3 cm from the center of the circle?
What is the magnitude of the magnetic field (in T) at the point P, r= 3 cm from the center of the circle?
What If?As before, at the moment shown in the figure, the electric field within the circle has a magnitude of 300 V/m and is increasing at a rate of 0 V/(m · s). In addition, suppose that the radius of the circular area of the electric field increases at a rate of 1.00 cm/s. What would the magnitude of the magnetic field be at point P at this moment (in T)?
. An electron is fired into
one end of the solenoid
Figure P28.66
I
in Figure P28.66. Viewed
along the positive x axis
from a negative x coor-
dinate, the electron
00
65°
enters from below at a
65° angle to the hori-
zontal, just inside the
bottom edge of the
solenoid. From this
200 mm
viewpoint the solenoid carries a 10-A clockwise current.
The solenoid is made from a 33.0-m length of wire, and it
has 400 turns along the 200-mm length shown in the figure.
(a) Ignoring end effects, what is the smallest time interval
required for the electron to pass through the solenoid without
striking the coils? (b) If the electron follows the quickest path
through the solenoid as determined from the time interval you
calculated in part a, how many revolutions does the electron's
path make around the solenoid axis? •0.
Chapter 32 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 32.1 - To calculate the magnetic flux through the...Ch. 32.2 - Prob. 32.2CECh. 32.3 - Prob. 32.3CECh. 32.3 - Prob. 32.4CECh. 32.4 - Prob. 32.5CECh. 32.5 - Prob. 32.6CECh. 32.6 - Prob. 32.7CECh. 32.8 - Prob. 32.8CECh. 32.8 - Prob. 32.9CECh. 32 - A constant magnetic field of 0.275 T points...
Ch. 32 - Prob. 2PQCh. 32 - Prob. 3PQCh. 32 - Prob. 4PQCh. 32 - Prob. 5PQCh. 32 - Figure P32.6 shows three situations involving a...Ch. 32 - A rectangular loop of length L and width W is...Ch. 32 - The magnetic field through a square loop of wire...Ch. 32 - Prob. 9PQCh. 32 - Prob. 10PQCh. 32 - Suppose a uniform magnetic field is perpendicular...Ch. 32 - Prob. 12PQCh. 32 - A square conducting loop with side length a = 1.25...Ch. 32 - A The magnetic field in a region of space is given...Ch. 32 - A The magnetic field in a region of space is given...Ch. 32 - Prob. 16PQCh. 32 - Prob. 17PQCh. 32 - Prob. 18PQCh. 32 - A square loop with side length 5.00 cm is on a...Ch. 32 - A thin copper rod of length L rotates with...Ch. 32 - Figure P32.21 shows a circular conducting loop...Ch. 32 - Prob. 22PQCh. 32 - A square loop with side length L, mass M, and...Ch. 32 - Prob. 24PQCh. 32 - Prob. 25PQCh. 32 - Prob. 26PQCh. 32 - Prob. 27PQCh. 32 - A solenoid of area Asol produces a uniform...Ch. 32 - Two circular conductors are perpendicular to each...Ch. 32 - Two circular conducting loops labeled A and B are...Ch. 32 - Prob. 31PQCh. 32 - Prob. 32PQCh. 32 - Prob. 33PQCh. 32 - Prob. 34PQCh. 32 - Prob. 35PQCh. 32 - Find an expression for the current in the slide...Ch. 32 - The slide generator in Figure 32.14 (page 1020) is...Ch. 32 - Prob. 38PQCh. 32 - A thin conducting bar (60.0 cm long) aligned in...Ch. 32 - A stiff spring with a spring constant of 1200.0...Ch. 32 - A generator spinning at a rate of 1.20 103...Ch. 32 - Suppose you have a simple homemade AC generator...Ch. 32 - Prob. 43PQCh. 32 - Prob. 44PQCh. 32 - Prob. 45PQCh. 32 - Prob. 46PQCh. 32 - A square coil with a side length of 12.0 cm and 34...Ch. 32 - Prob. 48PQCh. 32 - Prob. 49PQCh. 32 - Prob. 50PQCh. 32 - Prob. 51PQCh. 32 - Prob. 52PQCh. 32 - Prob. 53PQCh. 32 - Prob. 54PQCh. 32 - Prob. 55PQCh. 32 - Prob. 56PQCh. 32 - Prob. 57PQCh. 32 - A step-down transformer has 65 turns in its...Ch. 32 - Prob. 59PQCh. 32 - Prob. 60PQCh. 32 - Prob. 61PQCh. 32 - Prob. 62PQCh. 32 - Prob. 63PQCh. 32 - A bar magnet is dropped through a loop of wire as...Ch. 32 - Prob. 65PQCh. 32 - Prob. 66PQCh. 32 - A circular coil with 75 turns and radius 12.0 cm...Ch. 32 - Each of the three situations in Figure P32.68...Ch. 32 - A square loop with sides 1.0 m in length is placed...Ch. 32 - Prob. 70PQCh. 32 - Two frictionless conducting rails separated by l =...Ch. 32 - Imagine a glorious day after youve finished...Ch. 32 - Prob. 73PQCh. 32 - A Figure P32.74 shows an N-turn rectangular coil...Ch. 32 - A rectangular conducting loop with dimensions w =...Ch. 32 - Prob. 76PQCh. 32 - A conducting rod is pulled with constant speed v...Ch. 32 - Prob. 78PQCh. 32 - A conducting single-turn circular loop with a...Ch. 32 - A metal rod of mass M and length L is pivoted...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A jet airplane with a 75.0 m wingspan is flying at 265 m/s. v = 265 m/s What emf is induced between the wing tips in V if the vertical component of the Earth's magnetic field is 3.00 x 1o- T?arrow_forwardA very long solenoid of inner radius 2.75 cm creates an oscillating magnetic field B of the form: B = ?maxcos(??). For this solenoid, Bmax is 0.00675 T and ? = 354 rad/s. What is the maximum value Emax of the induced electric field at a perpendicular distance of 1.25 cm from the axis of the solenoid and near the center of the solenoid's length? What is the maximum value of the induced electric field at a perpendicular distance 5.65 cm from the axis of the solenoid and near the center of the solenoid's length?arrow_forwardA solenoid of radius r = 1.25 cm and length ℓ = 30.0 cm has 300 turns and carries 12.0 A. (a) Calculate the flux through the surface of a disk-shaped area of radius R = 5.00 cm that is positioned perpendicular to and centered on the axis of the solenoid as shown in 29.29a. (b) 29.29b shows an enlarged end view of the same solenoid. Calculate the flux through the tan area, which is an annulus with an inner radius of a = 0.400 cm and an outer radius of b = 0.800 cm.arrow_forward
- A long solenoid has a radius of 4 cm and has 800 turns/m. If the current in the solenoid is increasing at the rate of 25.3 A/s, what is the magnitude of the induced electric field at a point 2.2 cm from the axis of the solenoid? O a. 279.56 µV/m Ο b 379.50 μν /m Ο c227.70 μν/m O d. 923.45 µV/m O e. 2033.11 µV/marrow_forwardA square loop of wire is inside a region of changing magnetic field (see figure below). The sides of the square loop are 0.1m with a resistor of resistance 2502 connected to one of the sides. The magnetic field increases linearly from 0.2T to 0.5T in 3s. What is the magnitude of E.M.F induced across the resistor. O ImV 10V 232 2 Ο Ιμνarrow_forwardYou are working at a company that manufactures solenoids for industrial and research use. A client has ordered a solenoid that will be operated by a 1,000 V power supply and must be of length e = 21.0 cm. A cylindrical experimental package of radius r. = 2.00 cm must fit inside the solenoid. The client wants the largest possible magnetic field inside the solenoid. The thinnest copper wires allowed by your company are AWG 36, which corresponds to a wire diameter of d = 0.127 mm. You determine the maximum magnitude of magnetic field (in T) that can be created in the solenoid to report to the client. (The resistivity of copper is 1.7 x 10-8 0 ·m.)arrow_forward
- A long thin solenoid has 779 turns per meter and radius 2.00cm. The current in the solenoid is increasing at a rate 23 A/s. What is the magnitude of the induced Electric field (in V/m) at a point near the center of the solenoid and 1.3 cm from its axis?arrow_forward4.5G 23:47 O itall 67 48. A solenoid of radius r= 1.25 cm and length € = 30.0 cm W has 300 turns and carries 12.0 A. (a) Calculate the flux through the surface of a disk-shaped area of radius R = 5.00 cm that is positioned perpendicu- lar to and centered on the axis of the solenoid as shown in Figure P30.48a. (b) Figure P30.48b shows an rged end view of the same solenoid. Calculate the flux through the tan area, which is an annulus with an inner radius of a = 0.400 cm and an outer radius of b = 0.800 cm. a Figure P30.48arrow_forwardAn electric field exists between a pair of circular metal plates measuring 3.00 m in radius. The field is uniform across the surface of the plates but increases in strength at a rate given by E(t) = At², starting at t = 0 and persisting for 33.0 seconds. The constant, A, has a value of 69900 V.m¹.s². How strong will the magnetic field be on the edge of the plates at the end of the 33.0 second interval? T iarrow_forward
- T ade Ce A alpy + SeeCCmenR A K A Be R N tcobon US K C A M Gd e M ur G MetCkCoa Consider the arrangement shown in Figure P31.26. Assume that R = 6.00 N, e = 1.20 m, and a uniform 2.50-T magnetic field is directed into the page. At what speed should the bar be moved to produce a current of 0.500 A in the resistor? Bin R. app Activar Windowy w A A -a + N 39 x x x x x x x x X x x x x x x x > x x x 30 x x x x x xarrow_forward1. A rectangular loop of wire of length L = 7.0 cm and width s = 5.0 cm lies near a very long wire carrying a current I = 40 A , as shown in the figure. (The loop and the current carrying wire are in the same plane, and the two long edges of the loop are parallel to the wire.) What is the magnetic flux through the loop in units of µWb? Take h = 3.0 cm and 4o =47x10-7 T.m/A. Larrow_forwardAn electric field is restricted to a circular area of diameter d = 10.9 cm as shown in the figure. At the instant shown, the field direction is out of the page, its magnitude is 300 V/m, and its magnitude is increasing at a rate of 18.0 V/(m · s). A)What is the direction of the magnetic field at the point P, r = 16.6 cm from the center of the circle? B)What is the magnitude of the magnetic field (in T) at the point P, r = 16.6 cm from the center of the circle? C) As before, at the moment shown in the figure, the electric field within the circle has a magnitude of 300 V/m and is increasing at a rate of 18.0 V/(m · s). In addition, suppose that the radius of the circular area of the electric field increases at a rate of 1.00 cm/s. What would the magnitude of the magnetic field be at point P at this moment (in T)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY