A constant magnetic field of 0.275 T points through a circular loop of wire with radius 3.50 cm as shown in Figure P32.1.
a. What is the magnetic flux through the loop?
b. Is a current induced in the loop? Explain.
FIGURE P32.1
(a)
The magnetic flux through the loop.
Answer to Problem 1PQ
The magnetic flux through the loop is
Explanation of Solution
Write the expression for the magnetic flux through the loop.
Here,
Write the expression for the area of the loop.
Here,
Substitute the above equation in equation (I) to find
Substitute
Conclusion:
Thus, the magnetic flux through the loop is
(b)
Whether the current induced in the loop.
Answer to Problem 1PQ
No current is induced in the loop because there is no change in the flux passing through the loop.
Explanation of Solution
Since the magnetic flux linked with the loop is constant, there is no change in the magnetic flux associated with the loop of the wire. So, there is no current induced in the loop.
Conclusion:
Thus, no current is induced in the loop.
Want to see more full solutions like this?
Chapter 32 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- A uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forwardFigure P32.21 shows a circular conducting loop with a 5.00-cm radius and a total resistance of 1.30 placed within a uniform magnetic field pointing into the page. a. What is the rate at which the magnetic field is changing if a counterclockwise current I = 4.60 102 A is induced in the loop? b. Is the induced current caused by an increase or a decrease in the magnetic field with time?arrow_forwardFigure P30.11 shows three configurations of wires and the resultant magnetic fields due to current in the wires. What is the direction of the current that gives the resultant magnetic field shown in each case?arrow_forward
- The square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forwardA rectangular coil with resistance R has N turns, each of length and width as shown in Figure P31.36. The coil moves into a uniform magnetic field B with constant velocity v. What are the magnitude and direction of the total magnetic force on the coil (a) as it enters the magnetic field, (b) as it moves within the field, and (c) as it leaves the field?arrow_forwardA toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forward
- A circular coil with 200 turns Las a radius of 2.0 cm. (a) What current through tire coil results in a magnetic dipole moment of 3.0 Am2? (b) What is the maximum torque that the coil will experience in a uniform field of strength 5.0102 ? (c) If tire angle between and B is 45°, what is the magnitude of tire torque on the coil? (d) What is the magnetic potential energy of coil for this orientation?arrow_forwardA bar magnet is dropped through a loop of wire as shown in Figure P32.64. a. What is the direction of the induced current as the magnet is approaching the loop, as viewed from above where the magnet begins? b. What is the direction of the induced current after the magnet falls through and is receding from the loop, as viewed from above where the magnet began? FIGURE P32.64arrow_forwardA metal rod of mass M and length L is pivoted about a hinge at point O as shown in Figure P32.80. The axis of rotation passes through O into the page. A constant magnetic field B is applied into the page. Find the ratio of the maximum electric field inside the rod to the applied magnetic field when the rod is rotated with angular speed . Assume the speed of the rod is determined by the linear speed of its center of mass, and its mass is uniformly distributed. FIGURE P32.80arrow_forward
- A conducting rod is pulled with constant speed v on a smooth conducting rail as shown in Figure P32.77. A constant magnetic field B is directed into the page. If the speed of the bar is doubled, by what factor does the rate of heat dissipation change? FIGURE P32.77arrow_forwardA toroid with an inner radius of 20 cm and an outer radius of 22 cm is tightly wound with one layer of wire that has a diameter of 0.25 mm. (a) How many turns are there on the toroid? (b) If the current through the toroid windings is 2.0 A, what is the strength of the magnetic field at the center of the toroid?arrow_forwardA cube of edge length l=2.50 cm is positioned as shown in Figure P30.47. A uniform magnetic field given by B = (5 i + 4j + 3k) T exists throughout the region. (a) Calculate the magnetic flux through the shaded face. (b) What is the total flux through the six faces?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning