Calculus Volume 3
16th Edition
ISBN: 9781938168079
Author: Gilbert Strang, Edwin Jed Herman
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.2, Problem 76E
Find the velocity
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
No chatgpt pls will upvote
Already got wrong chatgpt answer
.
In a town with 5000 adults, a sample of 50 is selected using SRSWOR and asked their opinion of a proposed municipal project; 30 are found to favor it and 20 oppose it. If, in fact, the adults of the town were equally divided on the proposal, what would be the probability of observing what has been observed? Approximate using the Binomial distribution. Compare this with the exact probability which is 0.0418.
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Chapter 3 Solutions
Calculus Volume 3
Ch. 3.1 - Give the component functions x=f(t) and y=g(t) for...Ch. 3.1 - Given r(t)=3secti+2tantj , find the following...Ch. 3.1 - Sketch the curve of the vector-valued function...Ch. 3.1 - Evaluate limt0eti+sinttj+etk .Ch. 3.1 - Given the vector-valued function r(t)=cost,sint ,...Ch. 3.1 - Given the vector-valued function r(t)=t,t2+1 ,...Ch. 3.1 - Let r(t)=eti+sintj+lntk . Find the following...Ch. 3.1 - Find the limit of the following vector-valued...Ch. 3.1 - Find the limit of the following vector-valued...Ch. 3.1 - Find the limit of the following vector-valued...
Ch. 3.1 - Find the limit of the following vector-valued...Ch. 3.1 - Find the limit of the following vector-valued...Ch. 3.1 - Find the limit of the following vector-valued...Ch. 3.1 - Find the limit of the following vector-valued...Ch. 3.1 - Find the domain of the vector-valued functions....Ch. 3.1 - Find the domain of the vector-valued functions....Ch. 3.1 - Find the domain of the vector-valued functions....Ch. 3.1 - Let r(t)=cost,t,sint and use it to answer the...Ch. 3.1 - Let r(t)=cost,t,sint and use it to answer the...Ch. 3.1 - Let r(t)=cost,t,sint and use it to answer the...Ch. 3.1 - Let r(t)=cost,t,sint and use it to answer the...Ch. 3.1 - Eliminate the parameter t, write the equation in...Ch. 3.1 - Eliminate the parameter t, write the equation in...Ch. 3.1 - Eliminate the parameter t, write the equation in...Ch. 3.1 - Eliminate the parameter t, write the equation in...Ch. 3.1 - Eliminate the parameter t, write the equation in...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - Use a graphing utility to sketch each of the...Ch. 3.1 - [T] Let r(t)=costi+sintj+0.3sin(2t)k . Use...Ch. 3.1 - [T] Use the result of the preceding problem to...Ch. 3.1 - Use the results If the preceding two problems to...Ch. 3.1 - a. Graph the curve...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - Compute the derivatives of the vector-valued...Ch. 3.2 - For the following problems, find a tangent vector...Ch. 3.2 - For the following problems, find a tangent vector...Ch. 3.2 - For the following problems, find a tangent vector...Ch. 3.2 - For the following problems, find a tangent vector...Ch. 3.2 - Find the unit tangent vector for the following...Ch. 3.2 - Find the unit tangent vector for the following...Ch. 3.2 - Find the unit tangent vector for the following...Ch. 3.2 - Find the unit tangent vector for the following...Ch. 3.2 - Find the following. 59. ddt[r(t2)]Ch. 3.2 - Find the following. 60. ddt[t2.s(t)]Ch. 3.2 - Find the following. 61. ddt[r(t).s(t)]Ch. 3.2 - Compute the first, second, and third derivatives...Ch. 3.2 - Find r(t)r(t) for r(t)=3t5i+5tj+2t2k .Ch. 3.2 - The acceleration function, initial velocity, and...Ch. 3.2 - The position vector of a particle is...Ch. 3.2 - Find the velocity and the speed of a panicle with...Ch. 3.2 - Find the velocity function and show that v(t) is...Ch. 3.2 - Show that the speed of the particle is...Ch. 3.2 - Evaluate ddt[u(t)u(t)] given u(t)=t2i2tj+k .Ch. 3.2 - Find the antiderivative of...Ch. 3.2 - Evaluate 03ti+t2jdt .Ch. 3.2 - An object starts from nest at point P(1,2,0) and...Ch. 3.2 - Show that if the speed 0f a particle traveling...Ch. 3.2 - Given r(t)=ti+3tj+t2k and u(t)=4ti+t2j+t3k , find...Ch. 3.2 - Given r(t)=t+cost,tsint , find the velocity and...Ch. 3.2 - Find the velocity vector for the function...Ch. 3.2 - Find the equation of the tangent line to the curve...Ch. 3.2 - Describe and sketch the curve represented by the...Ch. 3.2 - Locate the highest point on the curve r(t)=6t,6tt2...Ch. 3.2 - The position vector for a particle is...Ch. 3.2 - The position vector for a particle is...Ch. 3.2 - The position vector for a particle is...Ch. 3.2 - A particle travels along the path of a helix with...Ch. 3.2 - A particle travels along the path of a helix with...Ch. 3.2 - A particle travels along the path of a helix with...Ch. 3.2 - A particle travels along the path of a helix with...Ch. 3.2 - A particle travels along the path of an ellipse...Ch. 3.2 - A particle travels along the path of an ellipse...Ch. 3.2 - A particle travels along the path of an ellipse...Ch. 3.2 - Given the vector-valued function r(t)=tant,sect,0...Ch. 3.2 - Given the vector-valued function r(t)=tant,sect,0...Ch. 3.2 - Given the vector-valued function r(t)=tant,sect,0...Ch. 3.2 - Find the minimum speed of a particle traveling...Ch. 3.2 - Given r(t)=ti+2sintj+2costk and...Ch. 3.2 - Given r(t)=ti+2sintj+2costk and...Ch. 3.2 - Now, use the product rule for the derivative of...Ch. 3.2 - Find the unit tangent vector T(t) for the...Ch. 3.2 - Find the unit tangent vector T(t) for the...Ch. 3.2 - Find the unit tangent vector T(t) for the...Ch. 3.2 - Evaluate the following integrals: 100. ( e...Ch. 3.2 - Evaluate the following integrals: 101. 01r(t)dt ,...Ch. 3.3 - Find the arc length of the curve on the given...Ch. 3.3 - Find the arc length of the curve on the given...Ch. 3.3 - Find the arc length of the curve on the given...Ch. 3.3 - Find the arc length of the curve on the given...Ch. 3.3 - r(t)=etcost,etsint over the interval [0,2] . Here...Ch. 3.3 - Find the length of one turn of the helix given by...Ch. 3.3 - Find the arc length of the vector-valued function...Ch. 3.3 - A particle travels in a circle with the equation...Ch. 3.3 - Set up an integral to find the circumference of...Ch. 3.3 - Find the length of the curve r(t)=2t,et,et over...Ch. 3.3 - Find the length of the curve r(t)=2sint,5t,2cost...Ch. 3.3 - The position function for a particle is...Ch. 3.3 - Given r(t)=acos(t)i+bsin(t)j , find the binormal...Ch. 3.3 - Given r(t)=2et,etcost,etsint , determine the...Ch. 3.3 - Given r(t)=2et,etcost,etsint , determine the unit...Ch. 3.3 - Given r(t)=2et,etcost,etsint , find the unit...Ch. 3.3 - Given r(t)=2et,etcost,etsint , find the unit...Ch. 3.3 - Given r(t)=ti+t2j+tk . find the unit tangent...Ch. 3.3 - Find the unit tangent vector T(t) and unit normal...Ch. 3.3 - Find the unit tangent vector T(t) for...Ch. 3.3 - Find the principal normal vector to the curve...Ch. 3.3 - Find T(t) for the curve r(t)=(t34t)i+(5t22)j .Ch. 3.3 - Find N(t) for the curve r(t)=(t34t)i+(5t22)j .Ch. 3.3 - Find the unit normal vector N(t) for...Ch. 3.3 - Find the unit tangent vector T(t) for...Ch. 3.3 - Find the arc length function s(t) for the line...Ch. 3.3 - Parameterize the helix r(t)=costi+sintj+tk using...Ch. 3.3 - Parameterize the curve using the arc-length...Ch. 3.3 - Find the curvature of the curve r(t)=5costi+4sintj...Ch. 3.3 - Find the x-coordinate at which the curvature of...Ch. 3.3 - Find the curvature of the curve r(t)=5costi+5sintj...Ch. 3.3 - Find the curvature k for the curve y=x14x2 at the...Ch. 3.3 - Find the curvature k for the curve y=13x3 at the...Ch. 3.3 - Find the curvature k of the curve r(t)=ti+6t2j+4tk...Ch. 3.3 - Find the mature of r(t)=2sint,5t,2cost .Ch. 3.3 - Find the curvature of r(t)=2ti+etj+etk at point...Ch. 3.3 - At what point does the curve y=ex have maximum...Ch. 3.3 - What happens to the curvature as x on for the...Ch. 3.3 - Find the point of maximum curvature on the curve...Ch. 3.3 - Find the equations of the normal plane and the...Ch. 3.3 - Find equations of the osculating circles of the...Ch. 3.3 - Find the equation for the osculating plane at...Ch. 3.3 - Find the radius of curvature of 6y=x3 at the point...Ch. 3.3 - Find the curvature at each point (x,y) on the...Ch. 3.3 - Calculate the mature of the circular helix...Ch. 3.3 - Find the radius of curvature of y=ln(x+1) at point...Ch. 3.3 - Find the radius of curvature of the hyperbola xy=1...Ch. 3.3 - A particle moves along the plane curve C described...Ch. 3.3 - A particle moves along the plane curve C described...Ch. 3.3 - A particle moves along the plane curve C described...Ch. 3.3 - The surface of a large cup is formed by revolving...Ch. 3.3 - The surface of a large cup is formed by revolving...Ch. 3.3 - The surface of a large cup is formed by revolving...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - How fast can a racecar travel through a circular...Ch. 3.4 - Given r(t)=(3t22)i+(2tsin(t))j , find the velocity...Ch. 3.4 - Given r(t)=(3t22)i+(2tsin(t))j , find the...Ch. 3.4 - Given the following position functions, find the...Ch. 3.4 - Given the following position functions, find the...Ch. 3.4 - Given the following position functions, find the...Ch. 3.4 - Find the velocity, acceleration, and speed of a...Ch. 3.4 - Find the velocity, acceleration, and speed of a...Ch. 3.4 - Find the velocity, acceleration, and speed of a...Ch. 3.4 - The position function of an object is given by...Ch. 3.4 - Let r(t)=rcosh(t)i+rsinh(wt)j . Find the velocity...Ch. 3.4 - Consider the motion of a point on the...Ch. 3.4 - A person on a hang glider is spiraling upward as a...Ch. 3.4 - A person on a hang glider is spiraling upward as a...Ch. 3.4 - A person on a hang glider is spiraling upward as a...Ch. 3.4 - Given that r(t)=e5tsint,e5tcost,4e5t is the...Ch. 3.4 - Given that r(t)=e5tsint,e5tcost,4e5t is the...Ch. 3.4 - Given that r(t)=e5tsint,e5tcost,4e5t is the...Ch. 3.4 - Given that r(t)=e5tsint,e5tcost,4e5t is the...Ch. 3.4 - A projectile is shot in the air from ground level...Ch. 3.4 - A projectile is shot in the air from ground level...Ch. 3.4 - A projectile is shot in the air from ground level...Ch. 3.4 - A projectile is shot in the air from ground level...Ch. 3.4 - A projectile is shot in the air from ground level...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - A projectile is fired at a height of 1.5m above...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - For each of the following problems, find the...Ch. 3.4 - All automobile that weighs 2700lb makes a turn on...Ch. 3.4 - Using Kepler’s laws, it can be shown that v0=2GMr0...Ch. 3.4 - Find the lime in years it takes the dwarf planet...Ch. 3.4 - Suppose that the position function for an object...Ch. 3.4 - Suppose that the position function for an object...Ch. 3.4 - Suppose that the position function for an object...Ch. 3 - True or False? Justify your answer with a proof or...Ch. 3 - True or False? Justify your answer with a proof or...Ch. 3 - True or False? Justify your answer with a proof or...Ch. 3 - True or False? Justify your answer with a proof or...Ch. 3 - Find the domains of the vector-valued functions....Ch. 3 - Find the domains of the vector-valued functions....Ch. 3 - Sketch the tunes. for the following vector...Ch. 3 - Sketch the tunes. for the following vector...Ch. 3 - Find a vector function that describes the...Ch. 3 - Find a vector function that describes the...Ch. 3 - Find the derivatives of u(t),u(t),u(t)u(t) ,...Ch. 3 - Find the derivatives of u(t),u(t),u(t)u(t) ,...Ch. 3 - Evaluate the following integrals. 214. (tan(...Ch. 3 - Evaluate the following integrals. 215. 14(t)dt ,...Ch. 3 - Find the length for the following curves. 216....Ch. 3 - Find the length for the following curves. 217....Ch. 3 - Reparametrize the following functions with respect...Ch. 3 - Reparametrize the following functions with respect...Ch. 3 - Find the curvature for the following vector...Ch. 3 - Find the curvature for the following vector...Ch. 3 - Find the curvature for the following vector...Ch. 3 - Find the curvature for the following vector...Ch. 3 - Find the curvature for the following vector...Ch. 3 - Find the curvature for the following vector...Ch. 3 - The following problems consider launching a...Ch. 3 - The following problems consider launching a...Ch. 3 - The following problems consider launching a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
For what values of a is
continuous at every x?
University Calculus: Early Transcendentals (4th Edition)
Standard Normal Distribution. In Exercises 17–36, assume that a randomly selected subject is given a bone densi...
Elementary Statistics (13th Edition)
Subtle substitutions Evaluate the following integrals. 17. 1e2ln2(x2)xdx
Calculus: Early Transcendentals (2nd Edition)
CHECK POINT 1 Find a counterexample to show that the statement The product of two two-digit numbers is a three-...
Thinking Mathematically (6th Edition)
Explain why commands and questions are not statements.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Question 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward16. Solve the given differential equation: y" + 4y sin (t)u(t 2π), - y(0) = 1, y'(0) = 0 Given, 1 (x² + 1)(x²+4) 1/3 -1/3 = + x²+1 x² +4 Send your answer in pen and paper don't r eputed ur self down Don't send the same previous answer that was Al generated Don't use any Al tool show ur answer in pe n and paper then takearrow_forwardR denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forward
- Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forward
- Question 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardGood explanation it sure experts solve itarrow_forwardBest explains it not need guidelines okkarrow_forward
- Task number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardActiv Determine compass error using amplitude (Sun). Minimum number of times that activity should be performed: 3 (1 each phase) Sample calculation (Amplitude- Sun): On 07th May 2006 at Sunset, a vessel in position 10°00'N 010°00'W observed the Sun bearing 288° by compass. Find the compass error. LMT Sunset: LIT: (+) 00d 07d 18h 00h 13m 40m UTC Sunset: 07d 18h 53m (added- since longitude is westerly) Declination (07d 18h): N 016° 55.5' d (0.7): (+) 00.6' Declination Sun: N 016° 56.1' Sin Amplitude = Sin Declination/Cos Latitude = Sin 016°56.1'/ Cos 10°00' = 0.295780189 Amplitude=W17.2N (The prefix of amplitude is named easterly if body is rising, and westerly if body is setting. The suffix is named same as declination) True Bearing=287.2° Compass Bearing= 288.0° Compass Error = 0.8° Westarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY