(II) Figure 32–57 shows a liquid-detecting prism device that might be used inside a washing machine or other liquid-containing appliance. If no liquid covers the prism’s hypotenuse, total internal reflection of the beam from the light source produces a large signal in the light sensor. If liquid covers the hypotenuse, some light escapes from the prism into the liquid and the light sensor’s signal decreases. Thus a large signal from the light sensor indicates the absence of liquid in the reservoir. If this device is designed to detect the presence of water, determine the allowable range for the prism’s index of refraction n. Will the device work properly if the prism is constructed from (inexpensive) lucite? For lucite, n = 1.5.
(II) Figure 32–57 shows a liquid-detecting prism device that might be used inside a washing machine or other liquid-containing appliance. If no liquid covers the prism’s hypotenuse, total internal reflection of the beam from the light source produces a large signal in the light sensor. If liquid covers the hypotenuse, some light escapes from the prism into the liquid and the light sensor’s signal decreases. Thus a large signal from the light sensor indicates the absence of liquid in the reservoir. If this device is designed to detect the presence of water, determine the allowable range for the prism’s index of refraction n. Will the device work properly if the prism is constructed from (inexpensive) lucite? For lucite, n = 1.5.
(II) Figure 32–57 shows a liquid-detecting prism device that might be used inside a washing machine or other liquid-containing appliance. If no liquid covers the prism’s hypotenuse, total internal reflection of the beam from the light source produces a large signal in the light sensor. If liquid covers the hypotenuse, some light escapes from the prism into the liquid and the light sensor’s signal decreases. Thus a large signal from the light sensor indicates the absence of liquid in the reservoir. If this device is designed to detect the presence of water, determine the allowable range for the prism’s index of refraction n. Will the device work properly if the prism is constructed from (inexpensive) lucite? For lucite, n = 1.5.
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 32 Solutions
Physics for Scientists and Engineers with Modern Physics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.