Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 32, Problem 15Q
You look into an aquarium and view a fish inside. One ray of light from the fish as it emerges from the tank is shown in Fig. 32–42. The apparent position of the fish is also shown. In the drawing, indicate the approximate position of the actual fish. Briefly justify your answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 32 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 32.1 - Does the result of Example 322 depend on your...Ch. 32.1 - Return to the Chapter-Opening Question, page 837,...Ch. 32.1 - Suppose you are standing about 3 m in front of a...Ch. 32.5 - Light passes from a medium with n = 1.3 into a...Ch. 32.7 - Fill a sink with water. Place a waterproof watch...Ch. 32.7 - It 45.0 plastic lenses are used in binoculars,...Ch. 32 - What would be the appearance of the Moon if it had...Ch. 32 - Archimedes is said to have burned the whole Roman...Ch. 32 - What is the focal length of a plane mirror? What...Ch. 32 - An object is placed along the principal axis of a...
Ch. 32 - Using the rules for the three rays discussed with...Ch. 32 - Prob. 6QCh. 32 - If a concave mirror produces a real image, is the...Ch. 32 - Prob. 8QCh. 32 - When you look at the Moons reflection from a...Ch. 32 - How can a spherical mirror have a negative object...Ch. 32 - Prob. 11QCh. 32 - When you look down into a swimming pool or a lake,...Ch. 32 - Draw a ray diagram to show why a stick looks bent...Ch. 32 - Prob. 14QCh. 32 - You look into an aquarium and view a fish inside....Ch. 32 - Prob. 16QCh. 32 - A ray of light is refracted through three...Ch. 32 - Can a light ray traveling in air be totally...Ch. 32 - When you look up at an object in air from beneath...Ch. 32 - What type of mirror is shown in Fig. 3244?Ch. 32 - Light rays from stars (including our Sun) always...Ch. 32 - (I) When you look at yourself in a 60-cm-tall...Ch. 32 - (I) Suppose that you want to take a photograph of...Ch. 32 - (II) Two plane mirrors meet at a 135 angle, Fig....Ch. 32 - (II) A person whose eyes are 1.64 m above the...Ch. 32 - (II) Show that if two plane mirrors meet at an...Ch. 32 - (II) Suppose you are 88 cm from a plane mirror....Ch. 32 - (II) Stand up two plane minors so they form a 90.0...Ch. 32 - (III) Suppose a third mirror is placed beneath the...Ch. 32 - (I) A solar cooker, really a concave mirror...Ch. 32 - (I) How far from a concave mirror (radius 24.0cm)...Ch. 32 - (I) When walking toward a concave mirror you...Ch. 32 - (II) A small candle is 35 cm from a concave mirror...Ch. 32 - (II) You look at yourself in a shiny...Ch. 32 - (II) A mirror at an amusement park shows an...Ch. 32 - (II) A dentist wants a small mirror that, when...Ch. 32 - (II) Some rearview mirrors produce images of cars...Ch. 32 - (II) You are standing 3.0 m from a convex security...Ch. 32 - (II) An object 3.0 mm high is placed 18 cm from a...Ch. 32 - (II) The image of a distant tree is virtual and...Ch. 32 - (II) Use two techniques, (a) a ray diagram, and...Ch. 32 - (II) Show, using a ray diagram, that the...Ch. 32 - (II) Use ray diagrams to show that the mirror...Ch. 32 - (II) The magnification of a convex mirror is +0.55...Ch. 32 - (II) (a) Where should an object be placed in front...Ch. 32 - (II) A 4.5-cm tall object is placed 26 cm in front...Ch. 32 - (II) A shaving or makeup mirror is designed to...Ch. 32 - (II) Let the focal length of a convex mirror be...Ch. 32 - (II) A spherical mirror of focal length f produces...Ch. 32 - Prob. 30PCh. 32 - (III) A short thin object (like a short length of...Ch. 32 - (I) The speed of light in ice is 2.29 108 m/s....Ch. 32 - (I) What is the speed of light in (a) ethyl...Ch. 32 - (I) Our nearest star (other than the Sun) is 4.2...Ch. 32 - (I) How long does it take light to reach us from...Ch. 32 - (II) The speed of light in a certain substance is...Ch. 32 - (II) Light is emitted from an ordinary lightbulb...Ch. 32 - (I) A diver shines a flashlight upward from...Ch. 32 - (I) A flashlight beam strikes the surface of a...Ch. 32 - Prob. 40PCh. 32 - (I) A light beam coming from an underwater...Ch. 32 - (II) A beam of light in air strikes a slab of...Ch. 32 - (II) A light beam strikes a 2.0-cm-thick piece of...Ch. 32 - (II) An aquarium filled with water has flat glass...Ch. 32 - (II) In searching the bottom of a pool at night, a...Ch. 32 - (II) The block of glass (n = 1.5) shown in cross...Ch. 32 - (II) A laser beam of diameter d1 = 3.0 mm in air...Ch. 32 - (II) Light is incident on an equilateral glass...Ch. 32 - (II) A triangular prism made of crown glass (n =...Ch. 32 - (II) Show in general that for a light beam...Ch. 32 - (III) A light ray is incident on a flat piece of...Ch. 32 - (I) By what percent is the speed of blue light...Ch. 32 - (I) A light beam strikes a piece of glass at a...Ch. 32 - (II) A parallel beam of light containing two...Ch. 32 - (III) A ray of light with wavelength is incident...Ch. 32 - (III) For visible light, the index of refraction n...Ch. 32 - (I) What is the critical angle for the interlace...Ch. 32 - (I) The critical angle for a certain liquidair...Ch. 32 - (II) A beam of light is emitted in a pool of water...Ch. 32 - (II) A ray of light, after entering a light fiber,...Ch. 32 - (II) A beam of light is emitted 8.0cm beneath the...Ch. 32 - (II) Figure 3257 shows a liquid-detecting prism...Ch. 32 - (II) Two rays A and B travel down a cylindrical...Ch. 32 - (II) (a) What is the minimum index of refraction...Ch. 32 - (III) Suppose a ray strikes the left face of the...Ch. 32 - (III) A beam of light enters the end of an optic...Ch. 32 - (II) A 13.0-cm-thick plane piece of glass (n =...Ch. 32 - (II) A fish is swimming in water inside a thin...Ch. 32 - (III) In Section 32-8, we derived Eq. 32-8 for a...Ch. 32 - Two identical concave mirrors are set facing each...Ch. 32 - A slab of thickness D, whose two faces are...Ch. 32 - Two plane mirrors are facing each other 2.2 m...Ch. 32 - We wish to determine the depth of a swimming pool...Ch. 32 - A 1.80-m-tall person stands 3.80 m from a convex...Ch. 32 - Prob. 76GPCh. 32 - Each student in a physics lab is assigned to find...Ch. 32 - A kaleidoscope makes symmetric patterns with two...Ch. 32 - When light passes through a prism, the angle that...Ch. 32 - If the apex angle of a prism is = 72 (see Fig....Ch. 32 - Fermats principle slates that light travels...Ch. 32 - Suppose Fig. 3236 shows a cylindrical rod whose...Ch. 32 - An optical fiber is a long transparent cylinder of...Ch. 32 - An object is placed 15 cm from a certain mirror....Ch. 32 - The end faces of a cylindrical glass rod (n =...Ch. 32 - The paint used or highway signs often contains...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Draw structures for a saturated hydrocarbon that has a molecular ion with an m/z value of 128.
Organic Chemistry (8th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Approximately how many feet is the Missouri River above sea level? Height above sea level: _________ feet
Applications and Investigations in Earth Science (9th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Section 9.6, we described how the speed of light varies with wavelength (or frequency) for transparent solids. But the speed of light in matter is also a function of temperature and pressure. This dependence is most marked for gases and is instrumental in producing such things as mirages and atmospheric refraction, the latter phenomenon being the displacement of an astronomical object (like the Sun or another star) from its true position because of the passage of its light through the atmosphere. Because Earth’s atmosphere is a gaseous mixture and easily compressed, its density is highest near Earth’s surface and gradually declines with altitude. (Refer to the discussion in Section 4.4 and Figure 4.29.) Thus, the speed of light in the atmosphere is lowest near the surface and gradually gets higher, approaching c as one goes farther and farther into space. Using this fact and the law of refraction, sketch the path a light ray from the Sun would follow upon entering Earth’s atmosphere, and predict the apparent position of the Sun relative to its true position (Figure 9.85). What does this tell you about the actual location of the Sun’s disk relative to your local horizon when you see it apparently setting brilliantly in the west in the evening?arrow_forwardA scuba diver training in a pool looks at his instructor as shown in Figure 25.53. What angle does the ray from the instructor’s face make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the perpendicular to the water is 25.0°. Figure 25.53 A scuba diver in a pool and his trainer look at each other.arrow_forwardCheck Your Understanding In the preceding example. how much distance inside the block of flint glass would the red and the violet rays have to progress before they are separated b 1.0 mm?arrow_forward
- A ray of 610 nm light goes from air into fused quartz at an incident angle of 55.0°. At what incident angle must 470 nm light enter flint glass to have the same angle of refraction?arrow_forwardRepeat Exercise 27.70, but take the light to be incident at a 45° angle.arrow_forwardVerify that the critical angle for light going from water to air is 48.6°, as discussed at the end of Example 1.4, regarding the critical angle for lig1it traveling in a polystyrene (a type of plastic) pipe surrounded by air.arrow_forward
- Equation 24.14 assumes the incident light is in air. If the light is incident from a medium of index n1 onto a medium of index n2, follow the procedure used to derive Equation 24.14 to show that tan p = n2/n1.arrow_forwardWhat happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardShow that when light reflects from two mirrors that meet each other at a right angle, the outgoing ray is parallel to the incoming ray, as illustrated in the following figure. Figure 25.51 A corner reflector sends the reflected reflected ray back in a direction parallel to the incident ray, independent of incoming direction.arrow_forward
- Exp1ain why an object in water always appears to be at a depth shallower than it actually is?arrow_forwardIf b is Brewster's angle for light reflected from the top of an interface between two substances, and b is Brewster's angle for light reflected from below, prove that b+b=90.0.arrow_forwardConsider a common mirage formed by superheated air immediately above a roadway. A truck driver whose eyes are 2.00 m above the road, where n = 1.000 293, looks forward. She perceives the illusion of a patch of water ahead on the road. The road appears wet only beyond a point on the road at which her line of sight makes an angle of 1.20 below the horizontal. Find the index of refraction of the air immediately above the road surface.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY