Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 32, Problem 32P
(I) The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ray of light is refracted through three different materials
(Fig. 23-49). Which material
has (a) the largest index of
refraction, (b) the smallest?
FIGURE 23–49
Question 14.
(b)
When light is incident on an interface between two materials with different index of
refraction, the angle of the refracted ray depends on the wavelength. However, the angle
of the reflected ray does not depend on the wavelength at all. Explain why this happens.
The speed of light in an unknown medium is measured to be 4.76 x 10^8 m/s. (a) What is the index or refraction of the medium?
Chapter 32 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 32.1 - Does the result of Example 322 depend on your...Ch. 32.1 - Return to the Chapter-Opening Question, page 837,...Ch. 32.1 - Suppose you are standing about 3 m in front of a...Ch. 32.5 - Light passes from a medium with n = 1.3 into a...Ch. 32.7 - Fill a sink with water. Place a waterproof watch...Ch. 32.7 - It 45.0 plastic lenses are used in binoculars,...Ch. 32 - What would be the appearance of the Moon if it had...Ch. 32 - Archimedes is said to have burned the whole Roman...Ch. 32 - What is the focal length of a plane mirror? What...Ch. 32 - An object is placed along the principal axis of a...
Ch. 32 - Using the rules for the three rays discussed with...Ch. 32 - Prob. 6QCh. 32 - If a concave mirror produces a real image, is the...Ch. 32 - Prob. 8QCh. 32 - When you look at the Moons reflection from a...Ch. 32 - How can a spherical mirror have a negative object...Ch. 32 - Prob. 11QCh. 32 - When you look down into a swimming pool or a lake,...Ch. 32 - Draw a ray diagram to show why a stick looks bent...Ch. 32 - Prob. 14QCh. 32 - You look into an aquarium and view a fish inside....Ch. 32 - Prob. 16QCh. 32 - A ray of light is refracted through three...Ch. 32 - Can a light ray traveling in air be totally...Ch. 32 - When you look up at an object in air from beneath...Ch. 32 - What type of mirror is shown in Fig. 3244?Ch. 32 - Light rays from stars (including our Sun) always...Ch. 32 - (I) When you look at yourself in a 60-cm-tall...Ch. 32 - (I) Suppose that you want to take a photograph of...Ch. 32 - (II) Two plane mirrors meet at a 135 angle, Fig....Ch. 32 - (II) A person whose eyes are 1.64 m above the...Ch. 32 - (II) Show that if two plane mirrors meet at an...Ch. 32 - (II) Suppose you are 88 cm from a plane mirror....Ch. 32 - (II) Stand up two plane minors so they form a 90.0...Ch. 32 - (III) Suppose a third mirror is placed beneath the...Ch. 32 - (I) A solar cooker, really a concave mirror...Ch. 32 - (I) How far from a concave mirror (radius 24.0cm)...Ch. 32 - (I) When walking toward a concave mirror you...Ch. 32 - (II) A small candle is 35 cm from a concave mirror...Ch. 32 - (II) You look at yourself in a shiny...Ch. 32 - (II) A mirror at an amusement park shows an...Ch. 32 - (II) A dentist wants a small mirror that, when...Ch. 32 - (II) Some rearview mirrors produce images of cars...Ch. 32 - (II) You are standing 3.0 m from a convex security...Ch. 32 - (II) An object 3.0 mm high is placed 18 cm from a...Ch. 32 - (II) The image of a distant tree is virtual and...Ch. 32 - (II) Use two techniques, (a) a ray diagram, and...Ch. 32 - (II) Show, using a ray diagram, that the...Ch. 32 - (II) Use ray diagrams to show that the mirror...Ch. 32 - (II) The magnification of a convex mirror is +0.55...Ch. 32 - (II) (a) Where should an object be placed in front...Ch. 32 - (II) A 4.5-cm tall object is placed 26 cm in front...Ch. 32 - (II) A shaving or makeup mirror is designed to...Ch. 32 - (II) Let the focal length of a convex mirror be...Ch. 32 - (II) A spherical mirror of focal length f produces...Ch. 32 - Prob. 30PCh. 32 - (III) A short thin object (like a short length of...Ch. 32 - (I) The speed of light in ice is 2.29 108 m/s....Ch. 32 - (I) What is the speed of light in (a) ethyl...Ch. 32 - (I) Our nearest star (other than the Sun) is 4.2...Ch. 32 - (I) How long does it take light to reach us from...Ch. 32 - (II) The speed of light in a certain substance is...Ch. 32 - (II) Light is emitted from an ordinary lightbulb...Ch. 32 - (I) A diver shines a flashlight upward from...Ch. 32 - (I) A flashlight beam strikes the surface of a...Ch. 32 - Prob. 40PCh. 32 - (I) A light beam coming from an underwater...Ch. 32 - (II) A beam of light in air strikes a slab of...Ch. 32 - (II) A light beam strikes a 2.0-cm-thick piece of...Ch. 32 - (II) An aquarium filled with water has flat glass...Ch. 32 - (II) In searching the bottom of a pool at night, a...Ch. 32 - (II) The block of glass (n = 1.5) shown in cross...Ch. 32 - (II) A laser beam of diameter d1 = 3.0 mm in air...Ch. 32 - (II) Light is incident on an equilateral glass...Ch. 32 - (II) A triangular prism made of crown glass (n =...Ch. 32 - (II) Show in general that for a light beam...Ch. 32 - (III) A light ray is incident on a flat piece of...Ch. 32 - (I) By what percent is the speed of blue light...Ch. 32 - (I) A light beam strikes a piece of glass at a...Ch. 32 - (II) A parallel beam of light containing two...Ch. 32 - (III) A ray of light with wavelength is incident...Ch. 32 - (III) For visible light, the index of refraction n...Ch. 32 - (I) What is the critical angle for the interlace...Ch. 32 - (I) The critical angle for a certain liquidair...Ch. 32 - (II) A beam of light is emitted in a pool of water...Ch. 32 - (II) A ray of light, after entering a light fiber,...Ch. 32 - (II) A beam of light is emitted 8.0cm beneath the...Ch. 32 - (II) Figure 3257 shows a liquid-detecting prism...Ch. 32 - (II) Two rays A and B travel down a cylindrical...Ch. 32 - (II) (a) What is the minimum index of refraction...Ch. 32 - (III) Suppose a ray strikes the left face of the...Ch. 32 - (III) A beam of light enters the end of an optic...Ch. 32 - (II) A 13.0-cm-thick plane piece of glass (n =...Ch. 32 - (II) A fish is swimming in water inside a thin...Ch. 32 - (III) In Section 32-8, we derived Eq. 32-8 for a...Ch. 32 - Two identical concave mirrors are set facing each...Ch. 32 - A slab of thickness D, whose two faces are...Ch. 32 - Two plane mirrors are facing each other 2.2 m...Ch. 32 - We wish to determine the depth of a swimming pool...Ch. 32 - A 1.80-m-tall person stands 3.80 m from a convex...Ch. 32 - Prob. 76GPCh. 32 - Each student in a physics lab is assigned to find...Ch. 32 - A kaleidoscope makes symmetric patterns with two...Ch. 32 - When light passes through a prism, the angle that...Ch. 32 - If the apex angle of a prism is = 72 (see Fig....Ch. 32 - Fermats principle slates that light travels...Ch. 32 - Suppose Fig. 3236 shows a cylindrical rod whose...Ch. 32 - An optical fiber is a long transparent cylinder of...Ch. 32 - An object is placed 15 cm from a certain mirror....Ch. 32 - The end faces of a cylindrical glass rod (n =...Ch. 32 - The paint used or highway signs often contains...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What distinguishes the mass spectrum of 2,2-dimethylpropane from the mass spectra of pentane and isopentane?
Organic Chemistry (8th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
There are 25 individuals in population 1, all with genotype AA, and there are 40 individuals in population 2, a...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 109 In Fig. 34-54, a fish watcher at point P watches a fish through a glass wall of a fish tank. The watcher is level with the fish; the index of re- fraction of the glass is 8/5, and that Watcher of the water is 4/3. The distances are di = 8.0 cm, dz = 3.0 cm, and dz = 6.8 cm. (a) To the fish, how far away does the watcher appear to be? (Hint: The watcher is the object. Light from that object passes through the wall's outside surface, which acts as a refracting sur- face. Find the image produced by that surface. Then treat that im- age as an object whose light passes through the wall's inside sur- face, which acts as another refracting surface.) (b) To the watcher, how far away does the fish appear to be? de D Wall Figure 34-54 Problem 109.arrow_forwardA beam of light traveling in the air, strikes a flat slab of glass at an incident angle of 35 o. The index of refraction of the glass is1.48. At the moment of entering and leaving the glass, what are the angles of refraction? ( n air = 1.00 )arrow_forwardA ray of light travelling through air, falls on the surface of a glass slab at an angle (i), it is found that the angle between the reflected and refracted ray is 90°. If the speed of light in glass is 2 x 10° m/s find the angle of incidence. (C = 3 × 10° m/s)arrow_forward
- If the apex angle of a prism is $ = 75° (see Fig. 23–63), what is the minimum incident angle for a ray if it is to emerge from the opposite side (i.e., not be totally internally reflected), given n = 1.58? FIGURE 23-63 Problem 77.arrow_forward(I) How long does it take light to reach us from the Sun,1.50 X 108km away?arrow_forwardWhen light goes from one material into another material having a HIGHER index of refraction O its speed, wavelength, and frequency all decrease. O its speed and wavelength decrease, but its frequency stays the same. its speed decreases but its frequency and wavelength stay the same. O its speed increases, its wavelength decreases, and its frequency stays the same. its speed decreases but its wavelength and frequency both increase.arrow_forward
- Asap plzarrow_forward(II) An aquarium filled with water has flat glass sides whose index of refraction is 1.54. A beam of light from outside the aquarium strikes the glass at a 43.5° angle to the perpendicular (Fig. 23–56). What is the angle of this light ray when it enters (a) the glass, and then (b) the water? (c) What would be the refracted angle if the ray entered the water directly? Glass Air Water 43.5° FIGURE 23-56 Problem 32.arrow_forward10. A light ray of given wavelength, initially in air, strikes a 90° prism at P (see Fig. 39-53) and is refracted there and at Q to such an extent that it just grazes the right-hand prism surface at Q. (a) Determine the index of retraction of the prism for this wavelength in terms of the angle of incidence , that gives rise to this situation. (b) Give a numerical upper bound for the index of refraction of the prism. Show, by ray dia- grams, what happens if the angle of incidence at P is (c) slightly greater or (d) slightly less than 0₁. 90 FIGURE 39-53. Problem 10.arrow_forward
- (e) Unpolarized light is passed through three successive polarizing filters, each with its transmission axis at 45° to the preceding filter. What percentage of light gets through? [Hint: The answer is not zero, paradoxicalarrow_forwardSuppose light were incident from air onto a material that had a negative index of refraction, say –1.3; where does the refracted light ray go?arrow_forward(II) In searching the bottom of a pool at night, a watchman shines a narrow beam of light from his flashlight, 1.3 m above the water level, onto the surface of the water at a point 2.5 m from his foot at the edge of the pool (Fig. 23–57). Where does the spot of light hit the bot- 1.3 m tom of the 2.1-m-deep pool? Measure from the bottom of the wall beneath 2.5 m- his foot. 2.1 m FIGURE 23-57 Problem 34.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY