Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 11Q
To determine
Angle of refraction when a ray is incident perpendicular to the boundary between two transparent materials.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
nH₂0 = 1.33
nglass
=
1.5
nair =
1.0
Light is in a crystal with an index of refraction of 1.75. The crystal is in air. The light traveling in the crystal is incident on the crystal-air interface. What is the angle of incidence that, using Snell's law, would lead to an angle of refraction of 90 degrees?
Give your answer in degrees.
What is the index of refraction for a material if the speed of light in this material
is 1.41 x 108 m/s?
Chapter 32 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 32.1 - Does the result of Example 322 depend on your...Ch. 32.1 - Return to the Chapter-Opening Question, page 837,...Ch. 32.1 - Suppose you are standing about 3 m in front of a...Ch. 32.5 - Light passes from a medium with n = 1.3 into a...Ch. 32.7 - Fill a sink with water. Place a waterproof watch...Ch. 32.7 - It 45.0 plastic lenses are used in binoculars,...Ch. 32 - What would be the appearance of the Moon if it had...Ch. 32 - Archimedes is said to have burned the whole Roman...Ch. 32 - What is the focal length of a plane mirror? What...Ch. 32 - An object is placed along the principal axis of a...
Ch. 32 - Using the rules for the three rays discussed with...Ch. 32 - Prob. 6QCh. 32 - If a concave mirror produces a real image, is the...Ch. 32 - Prob. 8QCh. 32 - When you look at the Moons reflection from a...Ch. 32 - How can a spherical mirror have a negative object...Ch. 32 - Prob. 11QCh. 32 - When you look down into a swimming pool or a lake,...Ch. 32 - Draw a ray diagram to show why a stick looks bent...Ch. 32 - Prob. 14QCh. 32 - You look into an aquarium and view a fish inside....Ch. 32 - Prob. 16QCh. 32 - A ray of light is refracted through three...Ch. 32 - Can a light ray traveling in air be totally...Ch. 32 - When you look up at an object in air from beneath...Ch. 32 - What type of mirror is shown in Fig. 3244?Ch. 32 - Light rays from stars (including our Sun) always...Ch. 32 - (I) When you look at yourself in a 60-cm-tall...Ch. 32 - (I) Suppose that you want to take a photograph of...Ch. 32 - (II) Two plane mirrors meet at a 135 angle, Fig....Ch. 32 - (II) A person whose eyes are 1.64 m above the...Ch. 32 - (II) Show that if two plane mirrors meet at an...Ch. 32 - (II) Suppose you are 88 cm from a plane mirror....Ch. 32 - (II) Stand up two plane minors so they form a 90.0...Ch. 32 - (III) Suppose a third mirror is placed beneath the...Ch. 32 - (I) A solar cooker, really a concave mirror...Ch. 32 - (I) How far from a concave mirror (radius 24.0cm)...Ch. 32 - (I) When walking toward a concave mirror you...Ch. 32 - (II) A small candle is 35 cm from a concave mirror...Ch. 32 - (II) You look at yourself in a shiny...Ch. 32 - (II) A mirror at an amusement park shows an...Ch. 32 - (II) A dentist wants a small mirror that, when...Ch. 32 - (II) Some rearview mirrors produce images of cars...Ch. 32 - (II) You are standing 3.0 m from a convex security...Ch. 32 - (II) An object 3.0 mm high is placed 18 cm from a...Ch. 32 - (II) The image of a distant tree is virtual and...Ch. 32 - (II) Use two techniques, (a) a ray diagram, and...Ch. 32 - (II) Show, using a ray diagram, that the...Ch. 32 - (II) Use ray diagrams to show that the mirror...Ch. 32 - (II) The magnification of a convex mirror is +0.55...Ch. 32 - (II) (a) Where should an object be placed in front...Ch. 32 - (II) A 4.5-cm tall object is placed 26 cm in front...Ch. 32 - (II) A shaving or makeup mirror is designed to...Ch. 32 - (II) Let the focal length of a convex mirror be...Ch. 32 - (II) A spherical mirror of focal length f produces...Ch. 32 - Prob. 30PCh. 32 - (III) A short thin object (like a short length of...Ch. 32 - (I) The speed of light in ice is 2.29 108 m/s....Ch. 32 - (I) What is the speed of light in (a) ethyl...Ch. 32 - (I) Our nearest star (other than the Sun) is 4.2...Ch. 32 - (I) How long does it take light to reach us from...Ch. 32 - (II) The speed of light in a certain substance is...Ch. 32 - (II) Light is emitted from an ordinary lightbulb...Ch. 32 - (I) A diver shines a flashlight upward from...Ch. 32 - (I) A flashlight beam strikes the surface of a...Ch. 32 - Prob. 40PCh. 32 - (I) A light beam coming from an underwater...Ch. 32 - (II) A beam of light in air strikes a slab of...Ch. 32 - (II) A light beam strikes a 2.0-cm-thick piece of...Ch. 32 - (II) An aquarium filled with water has flat glass...Ch. 32 - (II) In searching the bottom of a pool at night, a...Ch. 32 - (II) The block of glass (n = 1.5) shown in cross...Ch. 32 - (II) A laser beam of diameter d1 = 3.0 mm in air...Ch. 32 - (II) Light is incident on an equilateral glass...Ch. 32 - (II) A triangular prism made of crown glass (n =...Ch. 32 - (II) Show in general that for a light beam...Ch. 32 - (III) A light ray is incident on a flat piece of...Ch. 32 - (I) By what percent is the speed of blue light...Ch. 32 - (I) A light beam strikes a piece of glass at a...Ch. 32 - (II) A parallel beam of light containing two...Ch. 32 - (III) A ray of light with wavelength is incident...Ch. 32 - (III) For visible light, the index of refraction n...Ch. 32 - (I) What is the critical angle for the interlace...Ch. 32 - (I) The critical angle for a certain liquidair...Ch. 32 - (II) A beam of light is emitted in a pool of water...Ch. 32 - (II) A ray of light, after entering a light fiber,...Ch. 32 - (II) A beam of light is emitted 8.0cm beneath the...Ch. 32 - (II) Figure 3257 shows a liquid-detecting prism...Ch. 32 - (II) Two rays A and B travel down a cylindrical...Ch. 32 - (II) (a) What is the minimum index of refraction...Ch. 32 - (III) Suppose a ray strikes the left face of the...Ch. 32 - (III) A beam of light enters the end of an optic...Ch. 32 - (II) A 13.0-cm-thick plane piece of glass (n =...Ch. 32 - (II) A fish is swimming in water inside a thin...Ch. 32 - (III) In Section 32-8, we derived Eq. 32-8 for a...Ch. 32 - Two identical concave mirrors are set facing each...Ch. 32 - A slab of thickness D, whose two faces are...Ch. 32 - Two plane mirrors are facing each other 2.2 m...Ch. 32 - We wish to determine the depth of a swimming pool...Ch. 32 - A 1.80-m-tall person stands 3.80 m from a convex...Ch. 32 - Prob. 76GPCh. 32 - Each student in a physics lab is assigned to find...Ch. 32 - A kaleidoscope makes symmetric patterns with two...Ch. 32 - When light passes through a prism, the angle that...Ch. 32 - If the apex angle of a prism is = 72 (see Fig....Ch. 32 - Fermats principle slates that light travels...Ch. 32 - Suppose Fig. 3236 shows a cylindrical rod whose...Ch. 32 - An optical fiber is a long transparent cylinder of...Ch. 32 - An object is placed 15 cm from a certain mirror....Ch. 32 - The end faces of a cylindrical glass rod (n =...Ch. 32 - The paint used or highway signs often contains...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardA ray of light enters a liquid from air. If the angle between the incident and refracted rays is 150 and the angle between the reflected and refracted rays is 60, find the refractive index of the liquid. Assume the refractive index of air is 1.00.arrow_forwardUnpolarized light in vacuum is incident onto a sheet of glass with index of refraction n. The reflected and refracted rays are perpendicular to each other. Find the angle of incidence. This angle is called Brewsters angle or the polarizing angle. In this situation, the reflected light is linearly polarized, with its electric field restricted to be perpendicular to the plane containing the rays and the normal.arrow_forward
- Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forward14. A ray of light strikes the midpoint of one face of an equiangular (60°−60°−60°) glass prism (n = 1.5) at an angle of incidence of 30°. (a) Trace the path of the light ray through the glass and find the angles of incidence and refraction at each surface. (b) If a small fraction of light is also reflected at each surface, what are the angles of reflection at the surfaces?arrow_forwardA light ray initially in water enters a transparent substance at an angle of incidence of 37.0, and the transmitted ray is refracted at an angle of 25.0. Calculate the speed of light in the transparent substance.arrow_forward
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardHow can you use total internal reflection to estimate the index of refraction of a medium?arrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forward
- Light enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forwardThe end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forwardA light ray travels from vacuum into a slab of material with index of refraction n1 at incident angle θ with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle ϕ that the outgoing light makes with the normal? (a) ϕ > θ (b) ϕ < θ (c) ϕ = θ (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning