
a)
Interpretation:
Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the
Concept introduction:
In this process, the addition
In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.
The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (
The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.
Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.
b)
Interpretation:
Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.
Concept introduction:
In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.
In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.
The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.
The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.
Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.
c)
Interpretation:
Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.
Concept introduction:
In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.
In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.
The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.
The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.
Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.

Want to see the full answer?
Check out a sample textbook solution
Chapter 31 Solutions
Bundle: Organic Chemistry, 9th, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- Draw the line-angle formula of cis-2,3-dichloro-2-pentene. Then, draw the line-angle formula of trans-2,3-dichloro-2-pentene below. Draw the dash-wedge formula of cis-1,3-dimethylcyclohexane. Then, draw the dash-wedge formula of trans-1,3-dimethylcyclohexane below.arrow_forwardRecord the amounts measured and calculate the percent yield for Part 2 in the table below. Dicyclopentadiene measured in volume Cyclopentadiene measured in grams 0 Measured Calculated Mol Yield Mass (g) or Volume (mL) Mass (g) or Volume (ml) 0.6 2.955 Part 2 Measurements and Results Record the amounts measured and calculate the percent yield for Part 2 in the table below. 0.588 0.0044 2.868 0.0434 N/A Table view List view Measured Calculated Mol $ Yield Melting Point (C) Mass (g) or Volume (ml) Mass (g) or Volume (ml.) Cyclopentadiene 0.1 0.08 0.001189 measured in volume Maleic Anhydride 0.196 N/A cis-norbornene-5,6-endo- dicarboxylic anhydride 0.041 0.0002467 N/A N/A N/A 0.002 N/A N/A 128arrow_forwardDraw the condensed structural formula and line-angle formula for each: 2,3-dimethylheptane 3-bromo-2-pentanol 3-isopropyl-2-hexene 4-chlorobutanoic acidarrow_forward
- Record the IUPAC names for each of the structures shown below. a) b) c) OH d) OH e)arrow_forwardA solution of 14 g of a nonvolatile, nonelectrolyte compound in 0.10 kg of benzene boils at 81.7°C. If the BP of pure benzene is 80.2°C and the K, of benzene is 2.53°C/m, calculate the molar mass of the unknown compound. AT₁ = Km (14)arrow_forwardPlease help me answer the following questions. My answers weren't good enough. Need to know whyy the following chemicals were not used in this experiment related to the melting points and kf values. For lab notebook not a graded assignments.arrow_forward
- Draw the arrow pushing reaction mechanism. DO NOT ANSWER IF YOU WONT DRAW IT. Do not use chat gpt.arrow_forwardComplete the following esterification reaction by drawing the structural formula of the product formed. HOH HO i catalyst catalyst OH HO (product has rum flavor) (product has orange flavor)arrow_forwardThe statements in the tables below are about two different chemical equilibria. The symbols have their usual meaning, for example AG stands for the standard Gibbs free energy of reaction and K stands for the equilibrium constant. In each table, there may be one statement that is faise because it contradicts the other three statements. If you find a false statement, check the box next to t Otherwise, check the "no false statements" box under the table. statement false? AG"1 no false statements: statement false? AG-0 0 InK-0 0 K-1 0 AH-TAS no false statements 2arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning



