Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 73GP
(a)
To determine
The linear momentum of the photon emitted as the electron in a hydrogen atom makes a transition from the
n = 4
state to the
n = 2
state.
(b)
To determine
To write: The recoil speed of the hydrogen atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hydrogen atom at rest in the n = 2 state makes transition to the n = 1 state.
(i) Compute the recoil kinetic energy of the atom.
(ii) What fraction of the excitation energy of the n = 2 state is carried by the recoiling atom?
=
==
2.7 Two H-atoms collide head-on. After the collision, the net KE of both atoms is zero. Each atom
then emits a photon of wavelength = 121.6 nm, due to a (n 2) → (n 1) electron
transition. The rest mass of an H-atom is 1.673 × 10-27 kg. At what speed were the two
atoms moving before the collision? Were relativistic correction necessary in the calculation of
the speed?
(a) If an electron makes a transition from the n = 6 Bohr orbit to the n = 2 orbit, determine the wavelength of the photon created in the process.
416
nm
(b) Assuming that the atom was initially at rest, determine the recoil speed of the hydrogen atom when this photon is emitted.
Chapter 31 Solutions
Physics (5th Edition)
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If an atom has an election in the n = 5 state with m = 3, what are the possible values of l?arrow_forward(a) If an electron makes a transition from the n = 7 Bohr orbit to the n = 3 orbit, determine the wavelength of the photon created in the process. nm(b) Assuming that the atom was initially at rest, determine the recoil speed of the hydrogen atom when this photon is emitted. m/sarrow_forwardAn energy of about 21 eV is required to excite an electron in a helium atom from the 1s state to the 2s state. The same transition for the He+ ion requires approximately twice as much energy. Explain.arrow_forward
- A hydrogen atom initially in the n = 1 ground state absorbs a photon which excites the atom to the n = 3 state. Determine the frequency of the photon, in Hertz, (Hz).arrow_forwardcorrect Option is (d), explain whyarrow_forwardA free electron with kinetic energy 12eV collides with a Hydrogen atom and causes the atom to be raised to the first excited state. Given that the ground state energy is -13.6 eV and the first excited state energy is -3.4 eV, calculate: a) The kinetic energy of the free electron after the collision. b) The wavelength of the photon emitted when the atom returns to the ground state. [Assume speed of light c = 3x108 m/s, Planck constant h = 4.14 x 10-¹5 ev s]arrow_forward
- The Bohr model correctly predicts the main energy levels not only for atomic hydrogen but also for other "one-electron" atoms where all but one of the atomic electrons has been removed, such as in He+ (one electron removed) or Li++ (two electrons removed). The negative muon (μ−)behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ− comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. For a system consisting of a nucleus of iridium (Ir192 with 77 protons and 115 neutrons) and just one negative muon, predict the energy in eV of a photon emitted in a transition from the first excited state to the ground state. The high-energy photons emitted by transitions between energy levels in such "muonic atoms" are easily observed in experiments with muons.arrow_forwarda) Study the splitting of the second and the third excited states of the H-atom due to the relativistic correction of the kinetic energy of electron (ignore the spin of the electron). Draw a Grotrain diagram represent the splitting of both states. b) How many transitions will occur between these two states? Draw a Grotrain diagram represent the transitions.arrow_forwardAn electron of a hydrogen atom initially in the third excited state emits a photon and ends up in the ground state. (i) What is the energy in eV and in Joules of the emitted photon? (ii) What is the frequency of the emitted photon?arrow_forward
- ) In the Hydrogen atom, the energy that can be possessed by an electron is: ?? = −??. ?(??)/?^? If an electron makes a transition from ? = 2 to the ground state, calculate the wavelength of the photon emitted.arrow_forward5. (a) Find the ratio of intensities of 2p → 1s and 3p → 1s transitions of Hydrogen atom (b) What is the mean lifetime of the 2p state of Hydrogen atom?arrow_forward5. (a) By considering the case where an atom is enclosed within a cavity containing black body radiation at temperature T, show that the Einstein A and B coefficients are related to each other through the following relationships: 9,B12 = 92B21, 8nhv³ - B21, A21 where g, and g, are the degeneracies of the two levels respectively. The spectral energy density of black body radiation is given by 8thv³ u(v) c exp(hv/kgT) –1 1 where kg is Boltzmann's constant. (b) Explain why the effective temperature of the laser levels must be negative in order for a laser to oscillate. (c) The degeneracies of the upper and lower levels of the 488.0 nm line of the argon ion laser are 6 and 4, respectively. Deduce the effective temperature of the laser levels when the population of the upper level is twice that of the lower level. (d) Describe how population inversion is achieved in a semiconductor laser diode. (e) A certain semiconductor laser diode has a length of 0.5 mm and has a high reflection coating…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill