FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 60P
To determine
To find:
a) The rate
b) The rate
c) The rate
d) The rate
e) Is the sum of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In a series oscillating RLC circuit, R = 16.20,
C = 31.6 µF, L = 9.52 mH, and E = Emsinwat with
Em = 44.9 V and wd = 3040 rad/s. For time
t = 0.443 ms find (a) the rate På at which energy is
being supplied by the generator, (b) the rate Pat
which the energy in the capacitor is changing, (c) the
rate PL at which the energy in the inductor is
changing, and (d) the rate PR at which energy is being
dissipated in the resistor.
(a) Number i 84.47
(b) Number i 31.6
(c) Number
(d) Number
i -93.2
i 60.5
Units W
Units W
Units W
Units
W
In a series oscillating RLC circuit, R = 15.8 Q, C = 31.2 pF, L = 9.04 mH, and E= Emsinwat with Em = 45.4 V and wa= 2960 rad/s. For time t
= 0.430 ms find (a) the rate P, at which energy is being supplied by the generator, (b) the rate Pat which the energy in the capacitor is
changing, (c) the rate PL at which the energy in the inductor is changing, and (d) the rate PR at which energy is being dissipated in the
resistor. (e) Is the sum of PC. PL. and PR greater than, less than, or equal to Pg?
(a) Number
(b) Number
(c) Number i
(d) Number
(e)
i
Save for Later
Units
Units
Units
Units
Attempts: 0 of 5 used
Submit Answer
Consider a series RLC circuit for which R = 150 Ω, L = 20.0 mH, ΔVrms = 20.0 V, and ω = 5 000 s-1. Determine the value of the capacitance for which the current is a maximum.
Chapter 31 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 31 - Figure 31-19 shows three oscillating LC circuits...Ch. 31 - Figure 31-20 shows graphs of capacitor voltage vc...Ch. 31 - Prob. 3QCh. 31 - What values of phase constant in Eq. 31-12 allow...Ch. 31 - Curve a in Fig. 31-21 gives the impedance Z of a...Ch. 31 - Prob. 6QCh. 31 - Prob. 7QCh. 31 - The values of the phase constant for four...Ch. 31 - Prob. 9QCh. 31 - Figure 31-24 shows three situations like those of...
Ch. 31 - Prob. 11QCh. 31 - Figure 31-25 shows the current i and driving emf ...Ch. 31 - Prob. 13QCh. 31 - An oscillating LC circuit consists of a 75.0 mH...Ch. 31 - The frequency of oscillation of a certain LC...Ch. 31 - In a certain oscillating LC circuit, the total...Ch. 31 - What is the capacitance of an oscillating LC...Ch. 31 - In an oscillating LC circuit, L = 1.10 mH and C =...Ch. 31 - A 0.50 kg body oscillates in SHM on a spring that,...Ch. 31 - SSM The energy in an oscillating LC circuit...Ch. 31 - A single loop consists of inductors L1, L2, . . ....Ch. 31 - ILW In an oscillating LC circuit with L = 50 mH...Ch. 31 - Prob. 10PCh. 31 - SSM WWW A variable capacitor with a range from 10...Ch. 31 - In an oscillating LC circuit, when 75.0 of the...Ch. 31 - In an oscillating LC circuit, L = 3.00 mH and C =...Ch. 31 - To construct an oscillating LC system, you can...Ch. 31 - ILW An oscillating LC circuit consisting of a 1.0...Ch. 31 - An inductor is connected across a capacitor whose...Ch. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Using the loop rule, derive the differential...Ch. 31 - GO In an oscillating LC circuit in which C = 4.00...Ch. 31 - Prob. 21PCh. 31 - A series circuit containing inductance L1 and...Ch. 31 - GO In an oscillating LC circuit, L = 25.0 mH and C...Ch. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - GO In an oscillating series RLC circuit, find the...Ch. 31 - SSM In an oscillating series RLC circuit, show...Ch. 31 - A 1.50 F capacitor is connected as in Fig. 31-10...Ch. 31 - ILW A 50.0 mH inductor is connected as in Fig....Ch. 31 - A 50.0 resistor is connected as in Fig. 31-8 to...Ch. 31 - a At what frequency would a 6.0 mH inductor and a...Ch. 31 - GO An ac generator has emf = m sin dt, with m =...Ch. 31 - SSM An ac generator has emf = m sindt = /4, where...Ch. 31 - GO An ac generator with emf = m sin dt, where m =...Ch. 31 - ILW A coil of inductance 88 mH and unknown...Ch. 31 - An alternating source with a variable frequency, a...Ch. 31 - An electric motor has an effective resistance of...Ch. 31 - The current amplitude I versus driving angular...Ch. 31 - Remove the inductor from the circuit in Fig. 31-7...Ch. 31 - An alternating source drives a series RLC circuit...Ch. 31 - Prob. 41PCh. 31 - An alternating source with a variable frequency,...Ch. 31 - Prob. 43PCh. 31 - GO An ac generator with emf amplitude m = 220 V...Ch. 31 - GO ILW a In an RLC circuit, can the amplitude of...Ch. 31 - GO An alternating emf source with a variable...Ch. 31 - SSM WWW An RLC circuit such as that of Fig. 31-7...Ch. 31 - Prob. 48PCh. 31 - GO In Fig. 31-33, a generator with an adjustable...Ch. 31 - An alternating emf source with a variable...Ch. 31 - SSM The fractional half-width d of a resonance...Ch. 31 - An ac voltmeter with large impedance is connected...Ch. 31 - SSM An air conditioner connected to a 120 V rms ac...Ch. 31 - What is the maximum value of an ac voltage whose...Ch. 31 - What direct current will produce the same amount...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - For Fig. 31 -35, show that the average rate at...Ch. 31 - GO In Fig. 31-7, R = 15.0 , C = 4.70 F, and L =...Ch. 31 - Prob. 60PCh. 31 - SSM WWW Figure 31-36 shows an ac generator...Ch. 31 - Prob. 62PCh. 31 - SSM ILW A transformer has 500 primary turns and 10...Ch. 31 - Prob. 64PCh. 31 - An ac generator provides emf to a resistive load...Ch. 31 - In Fig. 31-35, let the rectangular box on the left...Ch. 31 - GO An ac generator produces emf = m sindt /4,...Ch. 31 - A series RLC circuit is driven by a generator at a...Ch. 31 - A generator of frequency 3000 Hz drives a series...Ch. 31 - A 45.0 mH inductor has a reactance of 1.30 k. a...Ch. 31 - An RLC circuit is driven by a generator with an...Ch. 31 - A series RLC circuit is driven in such a way that...Ch. 31 - A capacitor of capacitance 158 f and an inductor...Ch. 31 - An oscillating LC circuit has an inductance of...Ch. 31 - For a certain driven series RLC circuit, the...Ch. 31 - A L5D F capacitor has a capacitive re ac lance of...Ch. 31 - Prob. 77PCh. 31 - An electric motor connected to a 120 V, 60.0 Hz ac...Ch. 31 - SSM a In an oscillating LC circuit in terms of the...Ch. 31 - A series RLC circuit is driven by an alternating...Ch. 31 - SSM In a certain series RLC circuit being driven...Ch. 31 - A 1.50 mH inductor in an oscillating LC circuit...Ch. 31 - A generator with an adjustable frequency of...Ch. 31 - A series RLC circuit has a resonant frequency of...Ch. 31 - SSM An LC circuit oscillates at a frequency of...Ch. 31 - When under load and operating at an rms voltage of...Ch. 31 - The ac generator in Fig. 31-39 supplies 120 V at...Ch. 31 - In an oscillating LC circuit, L = 8.00 mH and C =...Ch. 31 - Prob. 89PCh. 31 - What capacitance would you connect across a 1.30...Ch. 31 - A series circuit with resistor inductor ...Ch. 31 - Prob. 92PCh. 31 - When the generator emf in Sample Problem 31.07 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an oscillating RLC circuit with L = 10 mH, C = 1.5 F , and R = 2.0 , how much time elapses before the amplitude of the oscillations drops to half its initial value?arrow_forwardIn a series oscillating RLC circuit, R-20 2, C=5 mE, L-20 mH, and e-e, sin wr with e45.0 V and w-300 rad/s. For time t= 1 ms. Find (a) the Pg energy is being supplied by the generator, and (b) the energy is being dissipated in the resistor.arrow_forwardAn L-R-C series circuit has inductance 42.0 mH, capacitance C, and resistance R. Without the resistor, the angular frequency of oscillation is 624 rad/srad/s. With the resistor, the angular frequency is 208 rad/srad/s. Find the value of C and R. The value of R is NOT 69.888 ohms OR 8.736 ohmsarrow_forward
- In an RLC circuit assume that R =5.00 , L =60.0 mH, fd = 60.0 Hz, and m = 30.0 V. For what valuesof the capacitance would the average rate at which energy isdissipated in the resistance be (a) a maximum and (b) a minimum?What are (c) the maximum dissipation rate and the corresponding(d) phase angle and (e) power factor? What are (f) the minimum dissipation rate and the corresponding (g) phase angle and (h) power factor?arrow_forwardAn LL-RR-CC series circuit has inductance 42.0 mHmH, capacitance CC, and resistance RR. Without the resistor, the angular frequency of oscillation is 624 rad/srad/s. With the resistor, the angular frequency is 208 rad/srad/s. Find the value of CC.arrow_forwardConsider a series RLC circuit, with R = 120 N, C = 330 µF and L = 510 mH. If an alternating electromotive force (emf) source, with the amplitude of 36.0 V and the angular frequency of 180 rad/s, calculate the phase angle in degrees.arrow_forward
- A series RLC circuit, with the components 1.4 kN, 22 mH and 1.8 µF, is connected to an alternating emf source of the amplitude ɛm = 18.0 V at the angular frequency @g. Assuming the circuit is under resonance, calculate the root mean square of the current , in mA, through the circuit?arrow_forwardIn an RLC circuit such as that of the figure assume that R = 4.21 Ω, L = 78.5 mH, fd = 49.9 Hz, and εm = 38.0 V. For what values of the capacitance would the average rate at which energy is dissipated in the resistance be (a) a maximum and minimum? What are (b) the maximum dissipation rate and the corresponding phase angle and power factor? What are (c) the minimum dissipation rate and the corresponding phase angle and power factor?arrow_forwardA series RLC circuit is connected to an oscillator with an rms voltage of 42.0 V, and consists of a 46.0 mH inductor, a 1.90 nF capacitor, and a 140. Ω resistor. If ω = ω0, what is the power supplied to the circuit?arrow_forward
- A series RCL circuit contains a 5.10-μF capacitor and a generator whose voltage is 11.0 V. At a resonant frequency of 1.30 kHz the power delivered to the circuit is 25.0 W. Find the values of (a) the inductance and (b) the resistance.arrow_forwardAn RLC circuit consists of a 46.3 2 resistor, a 2.47 µF capacitor, and a 4.16 mH inductor. Initially, the voltage across the capacitor is 3.08 V, and no current is flowing in the circuit. How many oscillations occur as the charge amplitude on the capacitor decays to 10.3 × 106 of its initial value? It is not acceptable to let w' = @. i oscillations (include decimals if needed to keep the appropriate number of significant digits)arrow_forwardA 14.0-mH inductor is connected to a North American electrical outlet (ΔVrms = 120 V, f = 60.0 Hz). Assuming the energy stored in the inductor is zero at t = 0, determine the energy stored at t = 1 150 s. i try to put in the answer and it says this The energy stored in the inductor oscillates at the same frequency as the voltage. Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you