FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 31, Problem 2Q
Figure 31-20 shows graphs of capacitor voltage vc for LC circuits 1 and 2, which contain identical capacitances and have the same maximum charge Q. Are (a) the inductance L and (b) the maximum current I in circuit 1 greater than, less than, or the same as those in circuit 2?
Figure 31-20 Question 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The charge on the capacitor of an LC circuit with inductance L and capacitance C
obeys the following expression. Find the maximum current in the circuit.
q=Q cos [t/(LC)0.5]
zero
Q(LC) ⁰.5
Olmax/(LC)0.5
Imax
QLC
Q/(LC) 0.5
9 Figure 31-23 shows the current i
and driving emf E for a series RLC
circuit. (a) Is the phase constant posi-
E, i
tive or negative? (b) To increase the
rate at which energy is transferred
to the resistive load, should L be in-
creased or decreased? (c) Should, in-
stead, C be increased or decreased?
Figure 31-23 Question 9.
Problem 2: An RC circuit consists of a 42.5 Q resistor and a 4.5 µF capacitor.
Part (a) Find its impedance Z at 75 Hz in 2.
sin()
cos()
tan()
7
cotan()
asin()
acos()
E ^^ 4
atan()
acotan()
sinh()
1
cosh()
tanh()
cotanh()
+
Degrees
Radians
VO BACKSP.
Submit
Hint
I
Hints:
:du
, Part (b) Find its impedance Z at 15 kHz in Q.
Chapter 31 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 31 - Figure 31-19 shows three oscillating LC circuits...Ch. 31 - Figure 31-20 shows graphs of capacitor voltage vc...Ch. 31 - Prob. 3QCh. 31 - What values of phase constant in Eq. 31-12 allow...Ch. 31 - Curve a in Fig. 31-21 gives the impedance Z of a...Ch. 31 - Prob. 6QCh. 31 - Prob. 7QCh. 31 - The values of the phase constant for four...Ch. 31 - Prob. 9QCh. 31 - Figure 31-24 shows three situations like those of...
Ch. 31 - Prob. 11QCh. 31 - Figure 31-25 shows the current i and driving emf ...Ch. 31 - Prob. 13QCh. 31 - An oscillating LC circuit consists of a 75.0 mH...Ch. 31 - The frequency of oscillation of a certain LC...Ch. 31 - In a certain oscillating LC circuit, the total...Ch. 31 - What is the capacitance of an oscillating LC...Ch. 31 - In an oscillating LC circuit, L = 1.10 mH and C =...Ch. 31 - A 0.50 kg body oscillates in SHM on a spring that,...Ch. 31 - SSM The energy in an oscillating LC circuit...Ch. 31 - A single loop consists of inductors L1, L2, . . ....Ch. 31 - ILW In an oscillating LC circuit with L = 50 mH...Ch. 31 - Prob. 10PCh. 31 - SSM WWW A variable capacitor with a range from 10...Ch. 31 - In an oscillating LC circuit, when 75.0 of the...Ch. 31 - In an oscillating LC circuit, L = 3.00 mH and C =...Ch. 31 - To construct an oscillating LC system, you can...Ch. 31 - ILW An oscillating LC circuit consisting of a 1.0...Ch. 31 - An inductor is connected across a capacitor whose...Ch. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Using the loop rule, derive the differential...Ch. 31 - GO In an oscillating LC circuit in which C = 4.00...Ch. 31 - Prob. 21PCh. 31 - A series circuit containing inductance L1 and...Ch. 31 - GO In an oscillating LC circuit, L = 25.0 mH and C...Ch. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - GO In an oscillating series RLC circuit, find the...Ch. 31 - SSM In an oscillating series RLC circuit, show...Ch. 31 - A 1.50 F capacitor is connected as in Fig. 31-10...Ch. 31 - ILW A 50.0 mH inductor is connected as in Fig....Ch. 31 - A 50.0 resistor is connected as in Fig. 31-8 to...Ch. 31 - a At what frequency would a 6.0 mH inductor and a...Ch. 31 - GO An ac generator has emf = m sin dt, with m =...Ch. 31 - SSM An ac generator has emf = m sindt = /4, where...Ch. 31 - GO An ac generator with emf = m sin dt, where m =...Ch. 31 - ILW A coil of inductance 88 mH and unknown...Ch. 31 - An alternating source with a variable frequency, a...Ch. 31 - An electric motor has an effective resistance of...Ch. 31 - The current amplitude I versus driving angular...Ch. 31 - Remove the inductor from the circuit in Fig. 31-7...Ch. 31 - An alternating source drives a series RLC circuit...Ch. 31 - Prob. 41PCh. 31 - An alternating source with a variable frequency,...Ch. 31 - Prob. 43PCh. 31 - GO An ac generator with emf amplitude m = 220 V...Ch. 31 - GO ILW a In an RLC circuit, can the amplitude of...Ch. 31 - GO An alternating emf source with a variable...Ch. 31 - SSM WWW An RLC circuit such as that of Fig. 31-7...Ch. 31 - Prob. 48PCh. 31 - GO In Fig. 31-33, a generator with an adjustable...Ch. 31 - An alternating emf source with a variable...Ch. 31 - SSM The fractional half-width d of a resonance...Ch. 31 - An ac voltmeter with large impedance is connected...Ch. 31 - SSM An air conditioner connected to a 120 V rms ac...Ch. 31 - What is the maximum value of an ac voltage whose...Ch. 31 - What direct current will produce the same amount...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - For Fig. 31 -35, show that the average rate at...Ch. 31 - GO In Fig. 31-7, R = 15.0 , C = 4.70 F, and L =...Ch. 31 - Prob. 60PCh. 31 - SSM WWW Figure 31-36 shows an ac generator...Ch. 31 - Prob. 62PCh. 31 - SSM ILW A transformer has 500 primary turns and 10...Ch. 31 - Prob. 64PCh. 31 - An ac generator provides emf to a resistive load...Ch. 31 - In Fig. 31-35, let the rectangular box on the left...Ch. 31 - GO An ac generator produces emf = m sindt /4,...Ch. 31 - A series RLC circuit is driven by a generator at a...Ch. 31 - A generator of frequency 3000 Hz drives a series...Ch. 31 - A 45.0 mH inductor has a reactance of 1.30 k. a...Ch. 31 - An RLC circuit is driven by a generator with an...Ch. 31 - A series RLC circuit is driven in such a way that...Ch. 31 - A capacitor of capacitance 158 f and an inductor...Ch. 31 - An oscillating LC circuit has an inductance of...Ch. 31 - For a certain driven series RLC circuit, the...Ch. 31 - A L5D F capacitor has a capacitive re ac lance of...Ch. 31 - Prob. 77PCh. 31 - An electric motor connected to a 120 V, 60.0 Hz ac...Ch. 31 - SSM a In an oscillating LC circuit in terms of the...Ch. 31 - A series RLC circuit is driven by an alternating...Ch. 31 - SSM In a certain series RLC circuit being driven...Ch. 31 - A 1.50 mH inductor in an oscillating LC circuit...Ch. 31 - A generator with an adjustable frequency of...Ch. 31 - A series RLC circuit has a resonant frequency of...Ch. 31 - SSM An LC circuit oscillates at a frequency of...Ch. 31 - When under load and operating at an rms voltage of...Ch. 31 - The ac generator in Fig. 31-39 supplies 120 V at...Ch. 31 - In an oscillating LC circuit, L = 8.00 mH and C =...Ch. 31 - Prob. 89PCh. 31 - What capacitance would you connect across a 1.30...Ch. 31 - A series circuit with resistor inductor ...Ch. 31 - Prob. 92PCh. 31 - When the generator emf in Sample Problem 31.07 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
DRAW IT In human spermatogenesis, mitosis of a stem cell gives rise to one cell that remains a stem cell and on...
Campbell Biology (11th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
35. The coefficient of static friction is 0.60 between the two blocks in FIGURE P7.35. The coefficient of kinet...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1.2 Ask two of your friends (not in class) to define the terms in problem1.1.
Do their answers agee with the d...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Identify each of the rocks shown in Figure 2.26 and the rock group to which each belongs.
Applications and Investigations in Earth Science (9th Edition)
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At s1iat frequency is the reactance of a 20F capacitor equal to that of a 10-mH inductor?arrow_forwardAsaparrow_forwardProblem 4: An AC power supply is connected to a capacitor of capacitance 1.5 μF. At time 0 the power supply is switched on and starts providing a time-dependent voltage v(t)-Vo cos(a)) across the capacitor, where V0-41 V and ω-382 rad/s. The capacitor is initially uncharged with Expert TA's Terms of Service. copying this information to any solutions sharing TA Account. A Part (a) Find the current, in milliamperes with its sign, through the capacitor at time t S. Part (b) Calculate the voltage across the capacitor, in volts with its sign, at time t- 5.5 s. Δ Part (c) What is the magnitude of the maximum current through the capacitor, in milliamperes?arrow_forward
- An LC circuit contains a 20 mH inductor and a 50 µF capacitor with an initial charge of 10 mC. The resistance of the circuit is negligible. Let the instant the circuit is closed be t = 0. (a) What is the total energy stored initially? Is it conserved during LC oscillations?arrow_forwardAn RLC circuit connected across an AC voltage source at frequencyf has resistance R, capacitive reactance XC , and inductivereactance XL. If the frequency is doubled so that fnew = 2f ,find the ratios (a) Rnew/R , (b) XC , new/XC , and (c) XL , new/XL .arrow_forwardProblem 1: An AC current source is connected to an inductor with an inductance L = 6 H. At time t= 0, the current through the inductor is io 0 A. The power supply provides a time-dependent current i through the inductor as described by the following equation : i()-10.cos(ot), where ω-500 rad/s. The current is measured in units of Amps ions sharing Part (a) Determine the current through the inductor, in amperes, at time t 5.5 sec. Δ tan() acos() sinh() cos(0) HOME sin cotan atan()a 4 5 6 acotansin cosh) tanhO cotanh ODegrees O Radians 0 BACKSPACE CLEAR Submit I give up! Hints: 0 for a 0% deduction. Hints remaining: 0 Feedback: 1% deduction per feedback. Part (b) Determine the voltage across the inductor, in volts, at time t 5.5 sec. A Part (c) Determine the magnitude of the maximum voltage, in volts, across the inductor.arrow_forward
- 2 Figure 31-20 shows graphs of capacitor voltage vc for LC circuits 1 and 2, which contain identical capacitances and have the same maximum charge Q. Are (a) the inductance L and (b) the maximum current / in circuit 1 greater than, less than, or the same as those in circuit 2? Figure 31-20 Question 2.arrow_forwardAn L-R-C series circuit has inductance 42.0 mH, capacitanceC, and resistance R. Without the resistor, the angular frequencyof oscillation is 624 rad/s. With the resistor, the angular frequency is208 rad/s. Find the values of (a) C and (b) R.arrow_forwardTo receive AM radio, you want an RLC circuit that can be made to resonate at any frequency between 500 and 1650 kHz. This is accomplished with a fixed 1.00 μH inductor connected to a variable capacitor. What would be the minimum capacitance, in nanofarads, that would be required? Cmin = Part (b) What would be the maximum capacitance, in nanofarads, that would be required? Cmax=arrow_forward
- If the ratio of the energy stored in a capacitor compared to the total energy stored in an LC circuit is 0.20, calculate the ratio R of the charge stored on the capacitor compared to the maximum charge stored on the capacitor in that circuit.arrow_forwardEstimate the value of inductance required for an LC circuit with a capacitance of 100µF to generate a frequency of 100 MHz.arrow_forwardIn an RLC circuit such as that of the figure assume that R = 4.21 Ω, L = 78.5 mH, fd = 49.9 Hz, and εm = 38.0 V. For what values of the capacitance would the average rate at which energy is dissipated in the resistance be (a) a maximum and minimum? What are (b) the maximum dissipation rate and the corresponding phase angle and power factor? What are (c) the minimum dissipation rate and the corresponding phase angle and power factor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY