Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 45GP
To determine
Length of wave train in space if light is emitted from an ordinary light bulb filament.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a solar panel is a square 0.5m on a side and absorbs all the light that hits it. It the panel has a mass of 3 kg. what intensity of light would be necessary to hold it up against the force of gravity (its own weight)? how much bigger is this than the solar constant (1400 W/m^2)?
High-Energy Cancer Treatment. Scientists are working on a new technique to kill cancer cells by zapping them with ultrahighenergy (in the range of 1012 W) pulses of light that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 5.0 um in diameter, with the pulse lasting for 4.0 ns with an average power of 2.0 * 1012 W. We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse. (a) How much energy is given to the cell during this pulse? (b) What is the intensity (in W/m2) delivered to the cell? (c) What are the maximum values of the electric and magnetic fields in the pulse?
When high-energy charged particles move through a transparent medium with a speed greater than the speed of light in that medium, a shock wave, or bow wave, of light is produced. This phenomenon is called the Cerenkov effect. When a nuclear reactor is shielded by a large pool of water, Cerenkov radiation can be seen as a blue glow in the vicinity of the reactor core due to high-speed electrons moving through the water as shown. In a particular case, the Cerenkov radiation produces a wave front with an apex half-angle of 53.0°. Calculate the speed of the electrons in the water. The speed of light in water is 2.25 × 108 m/s.
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 31.4 - Prob. 1AECh. 31.6 - Return to the Chapter-Opening Question, page 812,...Ch. 31.6 - What are the frequencies of (a) an 80-m-wavelength...Ch. 31.6 - Prob. 1DECh. 31.6 - If you are on the phone via satellite to someone...Ch. 31.6 - If your voice traveled as a sound wave, how long...Ch. 31 - An electric field E points away from you, and its...Ch. 31 - Prob. 2QCh. 31 - Prob. 3QCh. 31 - The electric field in an EM wave traveling north...
Ch. 31 - Is sound an electromagnetic wave? If not, what...Ch. 31 - Can EM waves travel through a perfect vacuum? Can...Ch. 31 - When you flip a light switch, does the overhead...Ch. 31 - Are the wavelengths of radio and television...Ch. 31 - What does the wavelength calculated in Example...Ch. 31 - Prob. 11QCh. 31 - In the electromagnetic spectrum, what type of EM...Ch. 31 - Can radio waves have the same frequencies as sound...Ch. 31 - Discuss how cordless telephones make use of EM...Ch. 31 - Can two radio or TV stations broadcast on the same...Ch. 31 - If a radio transmitter has a vertical antenna,...Ch. 31 - The carrier frequencies of FM broadcasts are much...Ch. 31 - A lost person may signal by flashing a flashlight...Ch. 31 - Determine the rate at which the electric field...Ch. 31 - Prob. 2PCh. 31 - At a given instant, a 2.8-A current flows in the...Ch. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - If the electric field in an EM wave has a peak...Ch. 31 - Prob. 9PCh. 31 - In an EM wave travelling west, the B field...Ch. 31 - Prob. 11PCh. 31 - Consider two possible candidates E(x, t) as...Ch. 31 - What is the frequency of a microwave whose...Ch. 31 - (a) What is the wavelength of a 25.75 109 Hz...Ch. 31 - How long does it take light to reach us from the...Ch. 31 - An EM wave has frequency 8.56 1014Hz. What is its...Ch. 31 - Electromagnetic waves and sound waves can have the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - What is the minimum angular speed at which...Ch. 31 - Prob. 22PCh. 31 - The magnetic field in a traveling EM wave has an...Ch. 31 - Prob. 24PCh. 31 - A spherically spreading EM wave comes from a...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - A 15.8-mW laser puts out a narrow beam 2.00 mm in...Ch. 31 - Estimate the average power output of the Sun,...Ch. 31 - Prob. 30PCh. 31 - How practical is solar power for various devices?...Ch. 31 - The Arecibo radio telescope in Puerto Rico can...Ch. 31 - Estimate the radiation pressure due to a 75-W bulb...Ch. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - What size should the solar panel on a satellite...Ch. 31 - What is the range of wavelengths for (a) FM radio...Ch. 31 - Estimate the wavelength for 1.9-GHz cell phone...Ch. 31 - The variable capacitor in the tuner of an AM radio...Ch. 31 - A certain FM radio tuning circuit has a fixed...Ch. 31 - A satellite beams microwave radiation with a power...Ch. 31 - A 1.60-m-long FM antenna is oriented parallel to...Ch. 31 - Who will hear the voice of a singer first: a...Ch. 31 - Prob. 45GPCh. 31 - Prob. 46GPCh. 31 - A radio voice signal from the Apollo crew on the...Ch. 31 - Cosmic microwave background radiation fills all...Ch. 31 - What are E0 and B0 2.00 m from a 75-W light...Ch. 31 - Prob. 50GPCh. 31 - Prob. 51GPCh. 31 - How large an emf (rms) will he generated in an...Ch. 31 - The average intensity of a particular TV stations...Ch. 31 - A radio station is allowed to broadcast at an...Ch. 31 - A point source emits light energy uniformly in all...Ch. 31 - Suppose a 35-kW radio station emits EM waves...Ch. 31 - What is the maximum power level of a radio station...Ch. 31 - In free space (vacuum), where the net charge and...Ch. 31 - The metal walls of a microwave oven form a cavity...Ch. 31 - Imagine that a steady current I flows in a...Ch. 31 - Prob. 61GPCh. 31 - Suppose that a right-moving EM wave overlaps with...Ch. 31 - The electric and magnetic fields of a certain EM...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Scientists are working on a new technique to kill cancer cells by zapping them with ultrahighenergy (in the range of 1012 W) pulses of light that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 5.0 µm in diameter, with the pulse lasting for 4.0 ns with an average power of 2.0 x 1012 W. We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse. (a) How much energy is given to the cell during this pulse? (b) What is the intensity (in W/m2 ) delivered to the cell? (c) What are the maximum values of the electric and magnetic fields in the pulse?arrow_forwardA uniform plane wave of 200MHz incident on a thick copper plate delivers an amplitude of 1.0mV/m on the surface. a) How much power passes in a square meter on the surface?arrow_forwardA microscopic spherical dust particle of radius 2 μm and mass 10 μg is moving in outer space at a constant speed of 30 cm/sec. A wave of light strikes it from the opposite direction of its motion and gets absorbed. Assuming the particle decelerates uniformly to zero speed in one second, what is the average electric field amplitude in the light?arrow_forward
- Distances in space are often quoted in units of lightyears, the distance light travels in 1 year. (a) How many meters is a light-year? (b) How many meters is it to Andromeda, the nearest large galaxy, given that it is 2.54 × 106 ly away? (c) The most distant galaxy yet discovered is 13.4 × 109 ly away. How far is this in meters?arrow_forwardA radar pulse returns 4.0 × 10−4 seconds after it is sent out to hit (and get reflected by) an airplane. What is the distance between the radar antenna and the airplane?arrow_forwardTwo astronauts are 1.60 m apart in their spaceship. One speaks to the other. The conversation is transmitted to earth via electromagnetic waves. The time it takes for sound waves to travel at 343 m/s through the air between the astronauts equals the time it takes for the electromagnetic waves to travel to the earth. How far away from the earth is the spaceship? Number 750 Units W/m^2arrow_forward
- 4) An incident phasor electric filed (x9-y4-26)e-/(2x+3) (V/m) in free space upon the planar surface of a dielectric material, with &, = 2.25, occupying the half-space z≥0. The average power density carried by the wave into the dielectric medium? a. 152.68 W/m² b. 152.68 mW/m² c. 252.68 W/m² d. none 5) A parallel-polarized beam of light with an electric field amplitude of 10 (mV/m) is incident in air on polystyrene with &, = 26 and , = 1. If the incidence angle at the air-polystyrene planar boundary is 600. The reflectivity and transmissivity are respectively? a. 5.1x10 4,999.49 b. 5.1x10,99.949 c. 51x10 4,999.49 d. none 6) Different modes have different transit times between the two ends of the fiber. This property of optical fibers is called and has the undesirable effect of changing the used for the transmission of digital data a. diversity, reflection b. cladding, fiber core c. transit, bandwidth ......... d. nonearrow_forwardConsider electromagnetic waves propagating in air.(a) Determine the frequency of a wave with a wavelength of (i) 5.0 km,(ii) 5.0 mm, (iii) 5.0 nm. (b) What is the wavelength (in meters andnanometers) of (i) gamma rays of frequency 6.50 * 10^21 Hz and (ii) anAM station radio wave of frequency 590 kHz?arrow_forwardConsider electromagnetic waves propagating in air. (a) Determine the frequency of a wave with a wavelength of (i) 5.0 km, (ii) 5.0 µm, (iii) 5.0 nm. (b) What is the wavelength (in meters and nanometers) of (i) gamma rays of frequency 6.50 x 1021 Hz and (ii) an AM station radio wave of frequency 590 kHz?arrow_forward
- In the Figure, if a;=10 Np/m ve B1= 1,56 rad/m for the medium 1, az=9,4 Np/m, B2=1,1 rad/m for the medium 2 and f=1GHZ, T=-0,69 , find the distance at which the magnitude of reflected electric field is equal to (E= 4,9 V/m. Z Er2, Hr2, 02 Et Ei ît îi E" X = 0 V f=1GHZ E'(x = 0)| = 16- marrow_forwardMaxwell's equations in a dielectric resemble those in vacuum but with eo replaced by K €0, where is the dielectric constant. We measure the speed of an electromagnetic wave in a certain dielectric and find u = .333 c. Determine the dielectric constantarrow_forwardA meteorologist is using radar to measure the distance to a storm. reception of the radar pulse is 0.23 ms. How far away is the storm? (in km) The time difference between transmission and OA: 3.71 | OB: 5.38 OC: 7.80 OD: 11.31 OE: 16.40 OF: 23.78 OG: 34.48 OH: 49.99arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning