How practical is solar power for various devices?
Assume that on a sunny day, sunlight has an intensity of 1000 W/m2 at the surface of Earth and that, when illuminated by that sunlight, a solar-cell panel can convert 10% of the sunlight’s energy into electric power. For each device given below, calculate the area A of solar panel needed to power it. (a) A calculator consumes 50 mW. Find A in cm2. Is A small enough so that the solar panel can be mounted directly on the calculator that it is powering? (b) A hair dryer consumes 1500 W. Find A in m2. Assuming no other electronic devices are operating within a house at the same time, is A small enough so that the hair dryer can be powered by a solar panel mounted on the house’s roof? (c) A car requires 20 hp for highway driving at constant velocity (this car would perform poorly in situations requiring acceleration). Find A in m2. Is A small enough so that this solar panel can he mounted directly on the car and power it in “real time”?
Want to see the full answer?
Check out a sample textbook solutionChapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Chemistry: A Molecular Approach (4th Edition)
Organic Chemistry (8th Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology in Focus (2nd Edition)
Biology: Life on Earth (11th Edition)
Concepts of Genetics (12th Edition)
- Consider a pure sample of a radioactive isotope with a mass number of (50). If the sample has mass of (25.0) micrograms and the isotope has a half-life of (17.5)x106 years, determine the decay rate for the sample. Give your answer in decays/second and with 3 significant figures.arrow_forwardA = 13, B = 04, C = 4 A particular radioactive isotope has a half-life of (29.8) years. If the initial amount of the isotope was (28.5) g, how years later will the only (7.20) g remain of this isotope? Give your answer in years and with 3 significant figures.arrow_forwardA particular radioactive isotope has a half-life of (6.5) hours. If you have (24.5) g of the isotope at 10:00 AM, how much will you have at 7:30PM? Give your answer in grams (g) and with 3 significant figures.arrow_forward
- SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE A ship is located in a certain region of the ocean, conducting research that requires knowledge of the sea depth at that point. To do so, it emits a signal with a wavelength of 40 m and a frequency of 30 Hz. If the signal is detected by the ship's radar 8 seconds later, what is the depth of the sea in that region?arrow_forwardNo Chatgpt please will upvotearrow_forwardIf ur using Chatgpt leave this problem otherwise will downvotearrow_forward
- For the following circuit, consider the resistor values given in the table and that it is powered by a battery having a fem of ε= 10.0 V and internal resistance r= 1.50 Ω. Determine:(a)Equivalent resistance from points a and b.b)Potential difference of EACH of the seven resistors.arrow_forwardANSWER ALL PARTS OF THE QUESTION AND SHOW/EXPLAIN YOUR WORK.arrow_forwardANSWER ALL PARTS OF THE QUESTION AND SHOW/EXPLAIN YOUR WORK.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning