Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 19P
(a)
To determine
Time taken by radio wave to sent a message from earth to mars when mars are nearest to earth.
(b)
To determine
Time taken by radio wave to sent a message from earth to mars when Mars is farthest to earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 31.4 - Prob. 1AECh. 31.6 - Return to the Chapter-Opening Question, page 812,...Ch. 31.6 - What are the frequencies of (a) an 80-m-wavelength...Ch. 31.6 - Prob. 1DECh. 31.6 - If you are on the phone via satellite to someone...Ch. 31.6 - If your voice traveled as a sound wave, how long...Ch. 31 - An electric field E points away from you, and its...Ch. 31 - Prob. 2QCh. 31 - Prob. 3QCh. 31 - The electric field in an EM wave traveling north...
Ch. 31 - Is sound an electromagnetic wave? If not, what...Ch. 31 - Can EM waves travel through a perfect vacuum? Can...Ch. 31 - When you flip a light switch, does the overhead...Ch. 31 - Are the wavelengths of radio and television...Ch. 31 - What does the wavelength calculated in Example...Ch. 31 - Prob. 11QCh. 31 - In the electromagnetic spectrum, what type of EM...Ch. 31 - Can radio waves have the same frequencies as sound...Ch. 31 - Discuss how cordless telephones make use of EM...Ch. 31 - Can two radio or TV stations broadcast on the same...Ch. 31 - If a radio transmitter has a vertical antenna,...Ch. 31 - The carrier frequencies of FM broadcasts are much...Ch. 31 - A lost person may signal by flashing a flashlight...Ch. 31 - Determine the rate at which the electric field...Ch. 31 - Prob. 2PCh. 31 - At a given instant, a 2.8-A current flows in the...Ch. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - If the electric field in an EM wave has a peak...Ch. 31 - Prob. 9PCh. 31 - In an EM wave travelling west, the B field...Ch. 31 - Prob. 11PCh. 31 - Consider two possible candidates E(x, t) as...Ch. 31 - What is the frequency of a microwave whose...Ch. 31 - (a) What is the wavelength of a 25.75 109 Hz...Ch. 31 - How long does it take light to reach us from the...Ch. 31 - An EM wave has frequency 8.56 1014Hz. What is its...Ch. 31 - Electromagnetic waves and sound waves can have the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - What is the minimum angular speed at which...Ch. 31 - Prob. 22PCh. 31 - The magnetic field in a traveling EM wave has an...Ch. 31 - Prob. 24PCh. 31 - A spherically spreading EM wave comes from a...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - A 15.8-mW laser puts out a narrow beam 2.00 mm in...Ch. 31 - Estimate the average power output of the Sun,...Ch. 31 - Prob. 30PCh. 31 - How practical is solar power for various devices?...Ch. 31 - The Arecibo radio telescope in Puerto Rico can...Ch. 31 - Estimate the radiation pressure due to a 75-W bulb...Ch. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - What size should the solar panel on a satellite...Ch. 31 - What is the range of wavelengths for (a) FM radio...Ch. 31 - Estimate the wavelength for 1.9-GHz cell phone...Ch. 31 - The variable capacitor in the tuner of an AM radio...Ch. 31 - A certain FM radio tuning circuit has a fixed...Ch. 31 - A satellite beams microwave radiation with a power...Ch. 31 - A 1.60-m-long FM antenna is oriented parallel to...Ch. 31 - Who will hear the voice of a singer first: a...Ch. 31 - Prob. 45GPCh. 31 - Prob. 46GPCh. 31 - A radio voice signal from the Apollo crew on the...Ch. 31 - Cosmic microwave background radiation fills all...Ch. 31 - What are E0 and B0 2.00 m from a 75-W light...Ch. 31 - Prob. 50GPCh. 31 - Prob. 51GPCh. 31 - How large an emf (rms) will he generated in an...Ch. 31 - The average intensity of a particular TV stations...Ch. 31 - A radio station is allowed to broadcast at an...Ch. 31 - A point source emits light energy uniformly in all...Ch. 31 - Suppose a 35-kW radio station emits EM waves...Ch. 31 - What is the maximum power level of a radio station...Ch. 31 - In free space (vacuum), where the net charge and...Ch. 31 - The metal walls of a microwave oven form a cavity...Ch. 31 - Imagine that a steady current I flows in a...Ch. 31 - Prob. 61GPCh. 31 - Suppose that a right-moving EM wave overlaps with...Ch. 31 - The electric and magnetic fields of a certain EM...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning