Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Videos

Question
Book Icon
Chapter 3.1, Problem 42E

(a)

To determine

Tocalculate:The value of f'(x) for x<1 .

(a)

Expert Solution
Check Mark

Answer to Problem 42E

The derivation is f'(x)=2x for x<1 .

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant

Calculation:

Since, x<1

Thus, the function will be f(x)=x2

Find the derivatives of the function. Use the formula f'(x)=limh0f(x+h)f(x)h .

  f'(x)=limh0(x+h)2xh=limh0x2+2xh+h2x2h=limh02xh+h2h=limh0[2x+h]=2x

Hence, for x<1 the derivation is f'(x)=2x .

(b)

To determine

To calculate:The value of f'(x) for x>1 .

(b)

Expert Solution
Check Mark

Answer to Problem 42E

The derivation is f'(x)=2 for x>1

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant

Calculation:

It is given that x>1

Thus, the function will be f(x)=2x

Find the derivatives of the function. Use the formula f'(x)=limh0f(x+h)f(x)h .

  f'(x)=limh0f(x+h)f(x)h=limh02(x+h)2xh=limh02x+2h2xh=limh02hh=limh02=2

Hence, for x>1 the derivation is f'(x)=2 .

(c)

To determine

To calculate:The value of limx1f'(x) .

(c)

Expert Solution
Check Mark

Answer to Problem 42E

The value of limx12x is 2.

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant.

Calculation:

From 42a, for the value x<1 , the derivation f'(x)=2x .

Thus substitute the value 1 for x .

  f'(x)=limx12x=2×1=2

Hence, the value of limx12x is 2.

(d)

To determine

To calculate:The value of limx1+f'(x) .

(d)

Expert Solution
Check Mark

Answer to Problem 42E

The value of limx1+2x is 2.

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant.

Calculation:

From 42a, for the value x>1 , the derivation f'(x)=2x .

Thus substitute the value 1 for x .

  f'(x)=limx1+2x=2×1=2

Hence, the value of limx1+2x is 2.

(e)

To determine

Whether limx1f'(x) exist or not.

(e)

Expert Solution
Check Mark

Answer to Problem 42E

The limit limx1f'(x) exist.

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Condition for existence of two-sided limit:

  limh1f'(x)=limh1+f'(x)

Where f(x) is the function.

Calculation:

It is known that, for two sided limit limh1f'(x)=limh1+f'(x) .

From 42c and 42d,

  limx12x=2

And, limx1+2x=2

Thus, limh1f'(x)=limh1+f'(x)=2

Hence, the limit limx1f'(x) exist.

(f)

To determine

To calculate:The left hand derivative of f at x=1 .

(f)

Expert Solution
Check Mark

Answer to Problem 42E

The limit limx1f'(x) exist.

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant.

Calculation:

The given function be f(x)={x2,x12x,x>1 .

Find the left hand derivative, use the formula f'(x)=limh0f(x+h)f(x)h .

Write the above formula using the given function as:

  f'(x)=limh0f(x+h)f(x)h=limh0f(1+h)f(1)h=limh0(1+h)21h=limh01+2h+h21h=limh02h+h2h=limh0[2+h]=2

(g)

To determine

To calculate:The right hand derivative of f at x=1 .

(g)

Expert Solution
Check Mark

Answer to Problem 42E

The right hand derivative does not exist.

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant.

Calculation:

The given function be f(x)={x2,x12x,x>1 .

For right sided limit, f(1+h) is derived for x>1 . But for f(1) use the derivation formula f'(x)=limh0f(x+h)f(x)h .

Write the above formula using the given function as:

  f'(x)=limh0+f(x+h)f(x)h=limh0+f(1+h)f(1)h=limh0+2(1+h)1h=limh0+2h+1h=

Thus, the limit of f'(x) for x>1 is undefined.

Hence, right hand derivative does not exist.

(h)

To determine

Whether the derivative f'(1) exist or not.

(h)

Expert Solution
Check Mark

Answer to Problem 42E

The right hand derivative does not exist.

Explanation of Solution

Given information:

The given function: f(x)={x2,x12x,x>1

Formula Used:

Definition of the derivative:

  f'(x)=limh0f(x+h)f(x)h

Where f(x) is the function and h is a constant.

Calculation:

From 42f and 42g, the left hand derivative exist but the right hand derivative does not.

Hence, the derivative does not exist.

Chapter 3 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 3.1 - Prob. 1ECh. 3.1 - Prob. 2ECh. 3.1 - Prob. 3ECh. 3.1 - Prob. 4ECh. 3.1 - Prob. 5ECh. 3.1 - Prob. 6ECh. 3.1 - Prob. 7ECh. 3.1 - Prob. 8ECh. 3.1 - Prob. 9ECh. 3.1 - Prob. 10ECh. 3.1 - Prob. 11ECh. 3.1 - Prob. 12ECh. 3.1 - Prob. 13ECh. 3.1 - Prob. 14ECh. 3.1 - Prob. 15ECh. 3.1 - Prob. 16ECh. 3.1 - Prob. 17ECh. 3.1 - Prob. 18ECh. 3.1 - Prob. 19ECh. 3.1 - Prob. 20ECh. 3.1 - Prob. 21ECh. 3.1 - Prob. 22ECh. 3.1 - Prob. 23ECh. 3.1 - Prob. 24ECh. 3.1 - Prob. 25ECh. 3.1 - Prob. 26ECh. 3.1 - Prob. 27ECh. 3.1 - Prob. 28ECh. 3.1 - Prob. 29ECh. 3.1 - Prob. 30ECh. 3.1 - Prob. 31ECh. 3.1 - Prob. 32ECh. 3.1 - Prob. 33ECh. 3.1 - Prob. 34ECh. 3.1 - Prob. 35ECh. 3.1 - Prob. 36ECh. 3.1 - Prob. 37ECh. 3.1 - Prob. 38ECh. 3.1 - Prob. 39ECh. 3.1 - Prob. 40ECh. 3.1 - Prob. 41ECh. 3.1 - Prob. 42ECh. 3.1 - Prob. 43ECh. 3.1 - Prob. 44ECh. 3.1 - Prob. 45ECh. 3.2 - Prob. 1QRCh. 3.2 - Prob. 2QRCh. 3.2 - Prob. 3QRCh. 3.2 - Prob. 4QRCh. 3.2 - Prob. 5QRCh. 3.2 - Prob. 6QRCh. 3.2 - Prob. 7QRCh. 3.2 - Prob. 8QRCh. 3.2 - Prob. 9QRCh. 3.2 - Prob. 10QRCh. 3.2 - Prob. 1ECh. 3.2 - Prob. 2ECh. 3.2 - Prob. 3ECh. 3.2 - Prob. 4ECh. 3.2 - Prob. 5ECh. 3.2 - Prob. 6ECh. 3.2 - Prob. 7ECh. 3.2 - Prob. 8ECh. 3.2 - Prob. 9ECh. 3.2 - Prob. 10ECh. 3.2 - Prob. 11ECh. 3.2 - Prob. 12ECh. 3.2 - Prob. 13ECh. 3.2 - Prob. 14ECh. 3.2 - Prob. 15ECh. 3.2 - Prob. 16ECh. 3.2 - Prob. 17ECh. 3.2 - Prob. 18ECh. 3.2 - Prob. 19ECh. 3.2 - Prob. 20ECh. 3.2 - Prob. 21ECh. 3.2 - Prob. 22ECh. 3.2 - Prob. 23ECh. 3.2 - Prob. 24ECh. 3.2 - Prob. 25ECh. 3.2 - Prob. 26ECh. 3.2 - Prob. 27ECh. 3.2 - Prob. 28ECh. 3.2 - Prob. 29ECh. 3.2 - Prob. 30ECh. 3.2 - Prob. 31ECh. 3.2 - Prob. 32ECh. 3.2 - Prob. 33ECh. 3.2 - Prob. 34ECh. 3.2 - Prob. 35ECh. 3.2 - Prob. 36ECh. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Prob. 39ECh. 3.2 - Prob. 40ECh. 3.2 - Prob. 41ECh. 3.2 - Prob. 42ECh. 3.2 - Prob. 43ECh. 3.2 - Prob. 44ECh. 3.2 - Prob. 45ECh. 3.2 - Prob. 46ECh. 3.2 - Prob. 47ECh. 3.2 - Prob. 48ECh. 3.3 - Prob. 1QRCh. 3.3 - Prob. 2QRCh. 3.3 - Prob. 3QRCh. 3.3 - Prob. 4QRCh. 3.3 - Prob. 5QRCh. 3.3 - Prob. 6QRCh. 3.3 - Prob. 7QRCh. 3.3 - Prob. 8QRCh. 3.3 - Prob. 9QRCh. 3.3 - Prob. 10QRCh. 3.3 - Prob. 1ECh. 3.3 - Prob. 2ECh. 3.3 - Prob. 3ECh. 3.3 - Prob. 4ECh. 3.3 - Prob. 5ECh. 3.3 - Prob. 6ECh. 3.3 - Prob. 7ECh. 3.3 - Prob. 8ECh. 3.3 - Prob. 9ECh. 3.3 - Prob. 10ECh. 3.3 - Prob. 11ECh. 3.3 - Prob. 12ECh. 3.3 - Prob. 13ECh. 3.3 - Prob. 14ECh. 3.3 - Prob. 15ECh. 3.3 - Prob. 16ECh. 3.3 - Prob. 17ECh. 3.3 - Prob. 18ECh. 3.3 - Prob. 19ECh. 3.3 - Prob. 20ECh. 3.3 - Prob. 21ECh. 3.3 - Prob. 22ECh. 3.3 - Prob. 23ECh. 3.3 - Prob. 24ECh. 3.3 - Prob. 25ECh. 3.3 - Prob. 26ECh. 3.3 - Prob. 27ECh. 3.3 - Prob. 28ECh. 3.3 - Prob. 29ECh. 3.3 - Prob. 30ECh. 3.3 - Prob. 31ECh. 3.3 - Prob. 32ECh. 3.3 - Prob. 33ECh. 3.3 - Prob. 34ECh. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3.3 - Prob. 39ECh. 3.3 - Prob. 40ECh. 3.3 - Prob. 41ECh. 3.3 - Prob. 42ECh. 3.3 - Prob. 43ECh. 3.3 - Prob. 44ECh. 3.3 - Prob. 45ECh. 3.3 - Prob. 46ECh. 3.3 - Prob. 47ECh. 3.3 - Prob. 48ECh. 3.3 - Prob. 49ECh. 3.3 - Prob. 50ECh. 3.3 - Prob. 51ECh. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - Prob. 54ECh. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Prob. 57ECh. 3.3 - Prob. 58ECh. 3.3 - Prob. 59ECh. 3.3 - Prob. 1QQCh. 3.3 - Prob. 2QQCh. 3.3 - Prob. 3QQCh. 3.3 - Prob. 4QQCh. 3.4 - Prob. 1QRCh. 3.4 - Prob. 2QRCh. 3.4 - Prob. 3QRCh. 3.4 - Prob. 4QRCh. 3.4 - Prob. 5QRCh. 3.4 - Prob. 6QRCh. 3.4 - Prob. 7QRCh. 3.4 - Prob. 8QRCh. 3.4 - Prob. 9QRCh. 3.4 - Prob. 10QRCh. 3.4 - Prob. 1ECh. 3.4 - Prob. 2ECh. 3.4 - Prob. 3ECh. 3.4 - Prob. 4ECh. 3.4 - Prob. 5ECh. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Prob. 8ECh. 3.4 - Prob. 9ECh. 3.4 - Prob. 10ECh. 3.4 - Prob. 11ECh. 3.4 - Prob. 12ECh. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Prob. 17ECh. 3.4 - Prob. 18ECh. 3.4 - Prob. 19ECh. 3.4 - Prob. 20ECh. 3.4 - Prob. 21ECh. 3.4 - Prob. 22ECh. 3.4 - Prob. 23ECh. 3.4 - Prob. 24ECh. 3.4 - Prob. 25ECh. 3.4 - Prob. 26ECh. 3.4 - Prob. 27ECh. 3.4 - Prob. 28ECh. 3.4 - Prob. 29ECh. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.4 - Prob. 37ECh. 3.4 - Prob. 38ECh. 3.4 - Prob. 39ECh. 3.4 - Prob. 40ECh. 3.4 - Prob. 41ECh. 3.4 - Prob. 42ECh. 3.4 - Prob. 43ECh. 3.4 - Prob. 44ECh. 3.4 - Prob. 45ECh. 3.4 - Prob. 46ECh. 3.4 - Prob. 47ECh. 3.4 - Prob. 48ECh. 3.4 - Prob. 49ECh. 3.4 - Prob. 50ECh. 3.5 - Prob. 1QRCh. 3.5 - Prob. 2QRCh. 3.5 - Prob. 3QRCh. 3.5 - Prob. 4QRCh. 3.5 - Prob. 5QRCh. 3.5 - Prob. 6QRCh. 3.5 - Prob. 7QRCh. 3.5 - Prob. 8QRCh. 3.5 - Prob. 9QRCh. 3.5 - Prob. 10QRCh. 3.5 - Prob. 1ECh. 3.5 - Prob. 2ECh. 3.5 - Prob. 3ECh. 3.5 - Prob. 4ECh. 3.5 - Prob. 5ECh. 3.5 - Prob. 6ECh. 3.5 - Prob. 7ECh. 3.5 - Prob. 8ECh. 3.5 - Prob. 9ECh. 3.5 - Prob. 10ECh. 3.5 - Prob. 11ECh. 3.5 - Prob. 12ECh. 3.5 - Prob. 13ECh. 3.5 - Prob. 14ECh. 3.5 - Prob. 15ECh. 3.5 - Prob. 16ECh. 3.5 - Prob. 17ECh. 3.5 - Prob. 18ECh. 3.5 - Prob. 19ECh. 3.5 - Prob. 20ECh. 3.5 - Prob. 21ECh. 3.5 - Prob. 22ECh. 3.5 - Prob. 23ECh. 3.5 - Prob. 24ECh. 3.5 - Prob. 25ECh. 3.5 - Prob. 26ECh. 3.5 - Prob. 27ECh. 3.5 - Prob. 28ECh. 3.5 - Prob. 29ECh. 3.5 - Prob. 30ECh. 3.5 - Prob. 31ECh. 3.5 - Prob. 32ECh. 3.5 - Prob. 33ECh. 3.5 - Prob. 34ECh. 3.5 - Prob. 35ECh. 3.5 - Prob. 36ECh. 3.5 - Prob. 37ECh. 3.5 - Prob. 38ECh. 3.5 - Prob. 39ECh. 3.5 - Prob. 40ECh. 3.5 - Prob. 41ECh. 3.5 - Prob. 42ECh. 3.5 - Prob. 43ECh. 3.5 - Prob. 44ECh. 3.5 - Prob. 45ECh. 3.5 - Prob. 46ECh. 3.5 - Prob. 47ECh. 3.5 - Prob. 48ECh. 3.5 - Prob. 49ECh. 3.5 - Prob. 50ECh. 3.5 - Prob. 51ECh. 3.5 - Prob. 52ECh. 3.5 - Prob. 1QQCh. 3.5 - Prob. 2QQCh. 3.5 - Prob. 3QQCh. 3.5 - Prob. 4QQCh. 3 - Prob. 1RECh. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - Prob. 5RECh. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - Prob. 10RECh. 3 - Prob. 11RECh. 3 - Prob. 12RECh. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RECh. 3 - Prob. 23RECh. 3 - Prob. 24RECh. 3 - Prob. 25RECh. 3 - Prob. 26RECh. 3 - Prob. 27RECh. 3 - Prob. 28RECh. 3 - Prob. 29RECh. 3 - Prob. 30RECh. 3 - Prob. 31RECh. 3 - Prob. 32RECh. 3 - Prob. 33RECh. 3 - Prob. 34RECh. 3 - Prob. 35RECh. 3 - Prob. 36RECh. 3 - Prob. 37RECh. 3 - Prob. 38RECh. 3 - Prob. 39RECh. 3 - Prob. 40RECh. 3 - Prob. 41RECh. 3 - Prob. 42RECh. 3 - Prob. 43RECh. 3 - Prob. 44RECh. 3 - Prob. 45RECh. 3 - Prob. 46RECh. 3 - Prob. 47RECh. 3 - Prob. 48RECh. 3 - Prob. 49RECh. 3 - Prob. 50RECh. 3 - Prob. 51RECh. 3 - Prob. 52RECh. 3 - Prob. 53RECh. 3 - Prob. 54RECh. 3 - Prob. 55RECh. 3 - Prob. 56RECh. 3 - Prob. 57RECh. 3 - Prob. 58RECh. 3 - Prob. 59RECh. 3 - Prob. 60RECh. 3 - Prob. 61RECh. 3 - Prob. 62RECh. 3 - Prob. 63RECh. 3 - Prob. 64RECh. 3 - Prob. 65RECh. 3 - Prob. 66RECh. 3 - Prob. 67RECh. 3 - Prob. 68RECh. 3 - Prob. 69RECh. 3 - Prob. 70RECh. 3 - Prob. 71RECh. 3 - Prob. 72RECh. 3 - Prob. 73RECh. 3 - Prob. 74RECh. 3 - Prob. 75RECh. 3 - Prob. 76RECh. 3 - Prob. 77RECh. 3 - Prob. 78RECh. 3 - Prob. 79RECh. 3 - Prob. 80RECh. 3 - Prob. 81RECh. 3 - Prob. 82RECh. 3 - Prob. 83RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Derivatives of Trigonometric Functions - Product Rule Quotient & Chain Rule - Calculus Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_niP0JaOgHY;License: Standard YouTube License, CC-BY