EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 31.48P
A motor in normal operation carries a direct current of 0.850 A when connected to a 120-V power supply. The resistance of the motor windings is 11.8 Ω. While in normal operation, (a) what is the back emf generated by the motor? (b) At what rate is internal energy produced in the windings? (c) What If? Suppose a malfunction slops the motor shaft from rotating. At what rate will internal energy be produced in the windings in this case? (Most motors have a thermal switch that will turn off the motor to prevent overheating when this stalling occurs.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A dc motor with its rotor and field coils connected in series has an internalresistance of 2.00 Ω. When running at full load on a 120 V line, itdraws a 4.00 A current. What is the motor’s efficiency?
A motor has coils with resistance of 20 Ω and operates from a voltage of 120 V. When the motor is operating at its maximum speed, the back emf is 100 V. Find the current in the coils
(a) when the motor is just turned on and
(b) when the motor has reached its maximum speed.
A 120.0-V motor draws a current of 5.92 A when running at normal speed. The resistance of the armature wire is 0.629 a. (a)
Determine the back emf generated by the motor. (b) What is the current at the instant when the motor is just turned on and has not
begun to rotate? (c) What series resistance must be added to limit the starting current to 15.0 A?
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
>
Chapter 31 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 31 - A circular loop of wire is held in a uniform...Ch. 31 - In Figure 30.8a, a given applied force of...Ch. 31 - Figure 30.12 Figure 30.12 shows a circular loop of...Ch. 31 - Prob. 31.4QQCh. 31 - In an equal-arm balance from the early 20th...Ch. 31 - Figure OQS1.I is a graph of the magnetic flux...Ch. 31 - Prob. 31.2OQCh. 31 - A rectangular conducting loop is placed near a...Ch. 31 - A circular loop of wire with a radius of 4.0 cm is...Ch. 31 - A square, flat loop of wire is pulled at constant...
Ch. 31 - The bar in Figure OQ31.6 moves on rails to the...Ch. 31 - A bar magnet is held in a vertical orientation...Ch. 31 - What happens to the amplitude of the induced emf...Ch. 31 - Two coils are placed near each other as shown in...Ch. 31 - A circuit consists of a conducting movable bar and...Ch. 31 - Two rectangular loops of wire lie in the same...Ch. 31 - In Section 7.7, we defined conservative and...Ch. 31 - A spacecraft orbiting the Earth has a coil of wire...Ch. 31 - In a hydroelectric dam, how is energy produced...Ch. 31 - A bar magnet is dropped toward a conducting ring...Ch. 31 - A circular loop of wire is located in a uniform...Ch. 31 - A piece of aluminum is dropped vertically downward...Ch. 31 - Prob. 31.7CQCh. 31 - When the switch in Figure CQ31.8a is closed, a...Ch. 31 - Prob. 31.9CQCh. 31 - A loop of wire is moving near a long, straight...Ch. 31 - A flat loop of wire consisting of a single turn of...Ch. 31 - An instrument based on induced emf has been used...Ch. 31 - Transcranial magnetic stimulation (TMS) is a...Ch. 31 - A 25-turn circular coil of wire has diameter 1.00...Ch. 31 - A circular loop of wire of radius 12.0 cm is...Ch. 31 - A circular loop of wire of radius 12.0 cm is...Ch. 31 - Prob. 31.7PCh. 31 - A strong electromagnet produces a uniform magnetic...Ch. 31 - A 30-turn circular coil of radius 4.00 cm and...Ch. 31 - Scientific work is currently under way to...Ch. 31 - An aluminum ring of radius r1 = 5.00 cm and...Ch. 31 - An aluminum ring of radius r1 and resistance R is...Ch. 31 - Prob. 31.13PCh. 31 - A coil of 15 turns and radius 10.0 cm surrounds a...Ch. 31 - A square, single-turn wire loop = 1.00 cm on a...Ch. 31 - A long solenoid has n = 400 turns per meter and...Ch. 31 - A coil formed by wrapping 50 turns of wire in the...Ch. 31 - When a wire carries an AC current with a known...Ch. 31 - A toroid having a rectangular cross section (a =...Ch. 31 - Prob. 31.20PCh. 31 - A helicopter (Fig. P30.11) has blades of length...Ch. 31 - Use Lenzs law 10 answer the following questions...Ch. 31 - A truck is carrying a steel beam of length 15.0 in...Ch. 31 - A small airplane with a wingspan of 14.0 m is...Ch. 31 - A 2.00-m length of wire is held in an eastwest...Ch. 31 - Prob. 31.26PCh. 31 - Figure P31.26 shows a lop view of a bar that can...Ch. 31 - A metal rod of mass m slides without friction...Ch. 31 - A conducting rod of length moves on two...Ch. 31 - Prob. 31.30PCh. 31 - Review. Figure P31.31 shows a bar of mass m =...Ch. 31 - Review. Figure P31.31 shows a bar of mass m that...Ch. 31 - The homopolar generator, also called the Faraday...Ch. 31 - Prob. 31.34PCh. 31 - Review. Alter removing one string while...Ch. 31 - A rectangular coil with resistance R has N turns,...Ch. 31 - Prob. 31.37PCh. 31 - An astronaut is connected to her spacecraft by a...Ch. 31 - Within the green dashed circle show in Figure...Ch. 31 - Prob. 31.40PCh. 31 - Prob. 31.41PCh. 31 - 100-turn square coil of side 20.0 cm rotates about...Ch. 31 - Prob. 31.43PCh. 31 - Figure P30.24 (page 820) is a graph of the induced...Ch. 31 - In a 250-turn automobile alternator, the magnetic...Ch. 31 - In Figure P30.26, a semicircular conductor of...Ch. 31 - A long solenoid, with its axis along the x axis,...Ch. 31 - A motor in normal operation carries a direct...Ch. 31 - The rotating loop in an AC generator is a square...Ch. 31 - Prob. 31.50PCh. 31 - Prob. 31.51APCh. 31 - Suppose you wrap wire onto the core from a roll of...Ch. 31 - A circular coil enclosing an area of 100 cm2 is...Ch. 31 - A circular loop of wire of resistance R = 0.500 ...Ch. 31 - A rectangular loop of area A = 0.160 m2 is placed...Ch. 31 - A rectangular loop of area A is placed in a region...Ch. 31 - Strong magnetic fields are used in such medical...Ch. 31 - Consider the apparatus shown in Figure P30.32: a...Ch. 31 - A guitars steel string vibrates (see Fig. 30.5)....Ch. 31 - Why is the following situation impossible? A...Ch. 31 - The circuit in Figure P3 1.61 is located in a...Ch. 31 - Magnetic field values are often determined by...Ch. 31 - A conducting rod of length = 35.0 cm is free to...Ch. 31 - Review. A particle with a mass of 2.00 1016 kg...Ch. 31 - The plane of a square loop of wire with edge...Ch. 31 - In Figure P30.38, the rolling axle, 1.50 m long,...Ch. 31 - Figure P30.39 shows a stationary conductor whose...Ch. 31 - Prob. 31.68APCh. 31 - A small, circular washer of radius a = 0.500 cm is...Ch. 31 - Figure P30.41 shows a compact, circular coil with...Ch. 31 - Prob. 31.71APCh. 31 - Review. In Figure P30.42, a uniform magnetic field...Ch. 31 - An N-turn square coil with side and resistance R...Ch. 31 - A conducting rod of length moves with velocity v...Ch. 31 - The magnetic flux through a metal ring varies with...Ch. 31 - A rectangular loop of dimensions and w moves with...Ch. 31 - A long, straight wire carries a current given by I...Ch. 31 - A thin wire = 30.0 cm long is held parallel to...Ch. 31 - Prob. 31.79CPCh. 31 - An induction furnace uses electromagnetic...Ch. 31 - Prob. 31.81CPCh. 31 - A betatron is a device that accelerates electrons...Ch. 31 - Review. The bar of mass m in Figure P30.51 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 120-V, series-wound motor has a field resistance of 80 and an armature resistance of 10. When it is operating at full speed, a back emf of 75 V is generated, (a) What is the initial current drawn by the motor? When the motor is operating at full speed, where are (b) the current drawn by the motor, (c) the power output of the source, [ d) the power output of the motor, and (e) the power dissipated in the two resistances?arrow_forwardThe generator of a car idling at 1.638E+3 rpm produces 11.6 V. What will the output be at a rotation speed of 2.762E+3 rpm, assuming nothing else changes? Answer in units of V.arrow_forwardA motor has coils with a resistance of 25 Ω and operates from a voltage of 241 V. When the motor is operating at its maximum speed, the back emf is 140 V (a) Find the current in the coils when the motor is first turned on. ?A (b) Find the current in the coils when the motor has reached maximum speed. ?A (c) If the current in the motor were 5.0 A at some instant, what is the back emf at that time? ?varrow_forward
- Chapter 20: Problem 12: The hydroelectric generators at the Hoover Dam can produce a maximum current of 8.00 × 10³ A at 250 kV. a) What is the maximum power output of the generators, in watts? b) The water that powers the generators enters and leaves the system at a low speed (thus we can neglect its change of kinetic energy) and loses 160 m of altitude during the process. What is the water flow required, in cubic meters per second, to produce this power, assuming 77 % efficiency?arrow_forwardA small town with a demand of 800 kW of electric power at 220 V is situated 15 km away from an electric plant generating power at 440 V. The resistance of the two wire line carrying power is 0.5 Ω per km. The town gets power from the line through a 4000-220 V step-down transformer at a sub-station in the town.(a) Estimate the line power loss in the form of heat.(b) How much power must the plant supply, assuming there is negligible power loss due to leakage?(c) Characterise the step up transformer at the plant.arrow_forwardA dc motor with its rotor and field coils connected in series has an internalresistance of 2.00 Ω. When running at full load on a 120 V line, itdraws a 4.00 A current. What is the rate of dissipation of energy in the internal resistance?arrow_forward
- You are camping in the wilderness. After a few days, you are horrified to discover that you did not pack as many batteries as you had planned, and you have no working batteries for your lights at night. Rummaging through the spare parts in the back of your truck, you find an old motor. On the plate, the information claims that the motor operates from 120 v, rotating at 1,600 rev/min, with an average back emf of 55.0 V. You wish to use the motor as a generator to provide a voltage with a peak value of 8.00 V to operate your electric lantern. You attach a hand crank to the armature of the motor. You need to determine the angular speed (in rev/s) at which you must rotate the crank to provide the desired voltage. Model the armature as a flat coil of wire. Notice that the average back emf is provided, not the peak value, so you will need to find an expression for the average back emf of a motor in terms of parameters associated with the armature. rev/sarrow_forwardA 120.0-V motor draws a current of 6.64 A when running at normal speed. The resistance of the armature wire is 0.651 . (a) Determine the back emf generated by the motor. (b) What is the current at the instant when the motor is just turned on and has not begun to rotate? (c) What series resistance must be added to limit the starting current to 15.0 A?arrow_forwardJohn is using a cordless electric weed trimmer with a dc motor to cut the long weeds in his backyard. During normal operation the trimmer generates a back emf of 16 V when it is connected to an emf of 24 V dc. The total electrical resistance of the motor is 8.0 Ω. (a) How much current flows through the motor when it is running smoothly? (b) Suddenly the string of the trimmer gets wrapped around a pole in the ground and the motor quits spinning. What is the current through the motor now? (c) How does the amount of heat dissipated in the motor during normal operation compare to the amount of heat dissipated when the motor is stuck? Calculate the ratio of the two amounts.arrow_forward
- B9arrow_forwardNow suppose we remove the source of emf and begin with the charge on the capacitor equal to QO. When we close the switch the capacitor discharges. (The energy stored in the capacitor's electric field is dissipated in the resistor.) Applying Kirchoff's loop rule for clockwise travel starting at the switch gives us R C W Solving the loop equation using calculus yields for the charge and current respectively - RC i= བགས པ#ད] RC Suppose your RC series circuit has a 2.0-ohm resistor ad a 2.0 X10-бF capacitor. The initial charge, QO on the capacitor is 2.0 X10-6 C. The time constant is 4.0x 10-6 s. Calculate the q and i at 4.0X10-6s 0.74 x 10-6 and 0.19 A 0.72 x10-6 C and 0.72 A 2.0 x 10-6 C, 0.74 A 0.74 C and 2.0 x10-6 Aarrow_forwardA dc motor with its rotor and field coils connected in series has an internalresistance of 2.00 Ω. When running at full load on a 120 V line, itdraws a 4.00 A current. What is the power delivered to the motor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY