(a)
The magnetic flux through the loop due to the current.
(a)
Answer to Problem 31.13P
The magnetic flux through the loop due to the current is
Explanation of Solution
Given info: The length of the rectangle is
The magnetic field is a function of the distance. So, the value of the magnetic field varies over the area of the rectangular loop.
Consider an infinitesimal section of the loop at a distance of
Write the expression for the area of the infinitesimal section of the loop.
Here,
Write the expression for the magnetic field at the infinitesimal section.
Here,
Write the expression for the magnetic flux through the infinitesimal section.
Substitute
Write the expression for the magnetic flux through the entire loop.
Conclusion:
Therefore, the magnetic flux through the loop due to the current is
(b)
The induced emf in the loop.
(b)
Answer to Problem 31.13P
The induced emf in the loop is
Explanation of Solution
Given info: The length of the rectangle is
Write the expression for the induced emf in the loop.
Here,
From part (a), the magnetic flux through the loop due to the current is
Substitute
Substitute
Substitute
Conclusion:
Therefore, the induced emf in the loop is
(c)
The direction of the induced current in the rectangle.
(c)
Answer to Problem 31.13P
The direction of the induced current in the rectangle is counterclockwise.
Explanation of Solution
Given info: The length of the rectangle is
Write the expression for the current induced in the loop.
Here,
From the above expression, the current is directly proportional to the emf induced in the loop. From part (b), the induced emf in the loop is
Conclusion:
Therefore, the direction of the induced current in the rectangle is counterclockwise.
Want to see more full solutions like this?
Chapter 31 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A loop of wire in the shape of a rectangle of width w and length L and a long, straight wire carrying a current I lie on a tabletop as shown in Figure P23.7. (a) Determine the magnetic flux through the loop due to the current I. (b) Suppose the current is changing with time according to I = a + bt, where a and b are constants. Determine the emf that is induced in the loop if b = 10.0 A/s, h = 1.00 cm, w = 10.0 cm, and L = 1.00 m. (c) What is the direction of the induced current in the rectangle? Figure P23.7arrow_forwardFigure P32.21 shows a circular conducting loop with a 5.00-cm radius and a total resistance of 1.30 placed within a uniform magnetic field pointing into the page. a. What is the rate at which the magnetic field is changing if a counterclockwise current I = 4.60 102 A is induced in the loop? b. Is the induced current caused by an increase or a decrease in the magnetic field with time?arrow_forwardA constant magnetic field of 0.275 T points through a circular loop of wire with radius 3.50 cm as shown in Figure P32.1. a. What is the magnetic flux through the loop? b. Is a current induced in the loop? Explain. FIGURE P32.1arrow_forward
- Suppose a uniform magnetic field is perpendicular to the 81211-in. page of your homework and a rectangular metal loop lies on the page. The loops sides line up with the edges of the page. The magnetic field is changing with time as described by B = 3.75 103 t, where B is in teslas and t is in seconds. a. Is the magnetic field increasing or decreasing? b. Find the magnitude of the emf induced in the loop.arrow_forwardA rectangular coil with resistance R has N turns, each of length and width as shown in Figure P31.36. The coil moves into a uniform magnetic field B with constant velocity v. What are the magnitude and direction of the total magnetic force on the coil (a) as it enters the magnetic field, (b) as it moves within the field, and (c) as it leaves the field?arrow_forwardA toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forward
- The square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forwardA Figure P32.74 shows an N-turn rectangular coil of length a and width b entering a region of uniform magnetic field of magnitude Bout directed out of the page. The velocity of the coil is constant and is upward in the figure. The total resistance of the coil is R. What are the magnitude and direction of the magnetic force on the coil a. when only a portion of the coil has entered the region with the field, b. when the coil is completely embedded in the field, and c. as the coil begins to exit the region with the field?arrow_forwardThe magnetic field through a square loop of wire with sides of length 3.00 cm changes with time as shown in Figure P32.8, where the sign indicates the direction of the field relative to the axis of the loop. Plot the emf induced in the loop versus time. FIGURE P32.8arrow_forward
- A time-dependent uniform magnetic field of magnitude B(t) is confined in a cylindrical region of radius R. A conducting rod of length 2D is placed in the region, as shown below. Show that the emf between the ends of the rod is given by dBdtDR2D2 . ( Hint: To find the between the ends, we need to integrate the electric field from one end to the other. To find the electric field, use Faraday’s law as “Ampere’s law for E”.)arrow_forward(a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forwardYou wish to move a rectangular loop of wire into a region of uniform magnetic field at a given speed so as to induce an emf in the loop. The plane of the loop must remain perpendicular to the magnetic field lines. In which orientation should you hold the loop while you move it into the region of magnetic field so as to generate the largest emf? (a) with the long dimension of the loop parallel to the velocity vector (b) with the short dimension of the loop parallel to the velocity vector (c) either way because the emf is the same regardless of orientationarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill