University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 31.20E
In an L-R-C series circuit, the components have the following values: L = 20.0 mH, C = 140 nF, and R = 350 Ω. The generator has an rms voltage of 120 V and a frequency of 1.25 kHz. Determine (a) the power supplied by the generator and (b) the power dissipated in the resistor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A series RLC circuit is connected to an oscillator with an rms voltage of 42.0 V, and consists of a 46.0 mH inductor, a 1.90 nF capacitor, and a 140. Ω resistor. If ω = ω0, what is the power supplied to the circuit?
For an RLC series circuit, the voltage amplitude and frequency of the source are 100 V and 500 Hz, respectively; R = 500 Ω and L = 0.20 H . Find the average power dissipated in the resistor for the following capacitance: C = 2.0 µF.
The rms current in a 25.0-0 resistor connected to an AC source is 2.00 A.
(a) What is the rms voltage across this resistor?
V
(b) What is the peak voltage of the AC source?
V
(c) What is the average power dissipated by the resistor?
W
(d) What is the maximum current across this resistor?
A
Chapter 31 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 31.1 - The accompanying figure shows four different...Ch. 31.2 - An oscillating voltage of fixed amplitude is...Ch. 31.3 - Rank the following ac circuits in order of their...Ch. 31.4 - Prob. 31.4TYUCh. 31.5 - How does the resonance frequency of an L-R-C...Ch. 31.6 - Each of the following four transformers has 1000...Ch. 31 - Household electric power in most of western Europe...Ch. 31 - The current in an ac power line changes direction...Ch. 31 - In an ac circuit, why is the average power for an...Ch. 31 - Equation (31.14) was derived by using the...
Ch. 31 - Prob. 31.5DQCh. 31 - Equation (31.9) says that ab = L di/dt (see Fig....Ch. 31 - Is it possible for the power factor of an L-R-C...Ch. 31 - In an L-R-C series circuit, can the instantaneous...Ch. 31 - In an L-R-C series circuit, what are the phase...Ch. 31 - When an L-R-C series circuit is connected across a...Ch. 31 - Prob. 31.11DQCh. 31 - A light bulb and a parallel-plate capacitor with...Ch. 31 - A coil of wire wrapped on a hollow tube and a...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - Prob. 31.16DQCh. 31 - An ideal transformer has N1, windings in the...Ch. 31 - An inductor, a capacitor, and a resistor are all...Ch. 31 - You want to double the resonance angular frequency...Ch. 31 - Prob. 31.1ECh. 31 - A sinusoidal current i = I cos t has an rms value...Ch. 31 - The voltage across the terminals of an ac power...Ch. 31 - A capacitor is connected across an ac source that...Ch. 31 - An inductor with L = 9.50 mH is connected across...Ch. 31 - A capacitance C and an inductance L are operated...Ch. 31 - Kitchen Capacitance. The wiring for a refrigerator...Ch. 31 - (a) Compute the reactance of a 0.450-H inductor at...Ch. 31 - (a) What is the reactance of a 3.00-H inductor at...Ch. 31 - A Radio Inductor. You want the current amplitude...Ch. 31 - A 0.180-H inductor is connected in series with a...Ch. 31 - A 250- resistor is connected in series with a...Ch. 31 - A 150- resistor is connected in series with a...Ch. 31 - You have a 200- resistor, a 0.400-H inductor, and...Ch. 31 - The resistor, inductor, capacitor, and voltage...Ch. 31 - Prob. 31.16ECh. 31 - In an L-R-C series circuit, the rms voltage across...Ch. 31 - A resistor with R = 300 and an inductor are...Ch. 31 - The power of a certain CD player operating at 120...Ch. 31 - In an L-R-C series circuit, the components have...Ch. 31 - (a) Show that for an L-R-C series circuit the...Ch. 31 - (a) Use the results of part (a) of Exercise 31.21...Ch. 31 - An L-R-C series circuit with L = 0.120 H, R = 240...Ch. 31 - An L-R-C series circuit is connected to a 120-Hz...Ch. 31 - A series ac circuit contains a 250- resistor, a...Ch. 31 - In an L-R-C series circuit the source is operated...Ch. 31 - Analyzing an L-R-C Circuit. You have a 200-...Ch. 31 - An L-R-C series circuit is constructed using a...Ch. 31 - In an L-R-C series circuit, R = 300, L = 0.400 H,...Ch. 31 - An L-R-C series circuit consists of a source with...Ch. 31 - In an L-R-C series circuit, R = 150 , L = 0.750 H,...Ch. 31 - In an L-R-C series circuit, R = 400 , L = 0.350 H,...Ch. 31 - In an L-R-C series circuit, L = 0.280 H and C =...Ch. 31 - Section 31.6 Transformers 31.34Off to Europe! You...Ch. 31 - A Step-Down Transformer. A transformer connected...Ch. 31 - A Step-Up Transformer. A transformer connected to...Ch. 31 - A coil has a resistance of 48.0 . At a frequency...Ch. 31 - Prob. 31.38PCh. 31 - An L-R-C series circuit has C = 4.80 F, L = 0.520...Ch. 31 - Five infinite-impedance voltmeters, calibrated to...Ch. 31 - CP A parallel-plate capacitor having square plates...Ch. 31 - Prob. 31.42PCh. 31 - A series circuit has an impedance of 60.0 and a...Ch. 31 - A large electromagnetic coil is connected to a...Ch. 31 - In an L-R-C series circuit, R = 300 , XC = 300 ,...Ch. 31 - At a frequency 1, the reactance of a certain...Ch. 31 - A High-Pass Filter. One application of L-R-C...Ch. 31 - A Low-Pass Filter. Figure P31.48 shows a low-pass...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - In an L-R-C series circuit the magnitude of the...Ch. 31 - In an L-R-C series circuit, the phase angle is...Ch. 31 - An L-R-C series circuit has R = 500 . L = 2.00 H,...Ch. 31 - The L-R-C Parallel Circuit. A resistor, an...Ch. 31 - The impedance of an L-R-C parallel circuit was...Ch. 31 - A 400- resistor and a 6.00-F capacitor are...Ch. 31 - An L-R-C series circuit consists of a 2.50-F...Ch. 31 - An L-R-C series circuit has R = 60.0 , L = 0.800...Ch. 31 - In an L-R-C series circuit, the source has a...Ch. 31 - In an L-R-C series ac circuit, the source has a...Ch. 31 - A resistance R, capacitance C, and inductance L...Ch. 31 - The Resonance Width. Consider an L-R-C series...Ch. 31 - An L-R-C series circuit draws 220 W from a 120-V...Ch. 31 - DATA A coworker of yours was making measurements...Ch. 31 - DATA You are analyzing an ac circuit that contains...Ch. 31 - DATA You are given this table of data recorded for...Ch. 31 - CALC In an L-R-C series circuit the current is...Ch. 31 - CALC (a) At what angular frequency is the voltage...Ch. 31 - Prob. 31.69PPCh. 31 - If the electrode oscillates between two points 20...Ch. 31 - The signal from the oscillating electrode is fed...Ch. 31 - If the frequency at which the electrode is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
53.* BIO Dumbbell lift IA woman lifts a 3.6-kg dumbbell in each hand with her arm in a horizontal position at t...
College Physics
Land west of the San Andreas fault in southern California is moving at an average velocity of about 6 cm/y nort...
College Physics
(I) What is Brewster’s angle for a diamond submerged in water if the light is hitting the diamond (n = 2.42) wh...
Physics for Scientists and Engineers with Modern Physics
Refer again to the discussion among the three students in part A. Do you agree with your original answer? If yo...
Tutorials in Introductory Physics
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For an RLC series circuit, the voltage amplitude and frequency of the source are 100 V and 500 Hz, respectively; R=500 ; and L = 0.20H . Find the average power dissipated in the resistor for the following values for the capacitance: (a) C=2.0F and (b) C=2.0F .arrow_forwardIn the AC circuit shown in Figure P32.3, R = 70.0 and the output voltage of the AC source is Vmax sin t. (a) If VR = 0.250 Vmax for the first time at t = 0.0100 s, what is the angular frequency of the source? (b) What is the next value of t for which VR = 0.250 Vmax? Figure P32.6 Problem 3 and 5.arrow_forwardAn ac source of voltage amplitude 10 V delivers electric energy at a rate of 0.80 W when its current output is 2.5 A. What is the phase angle between the emf and the current?arrow_forward
- An inductor and a resistor are connected in series across an AC generator, as shown in Figure CQ21.16. Immediately after the switch is closed, which of the following statements is true? (a) The current is V/R. (b) The voltage across the inductor is zero. (c) The current in the circuit is zero. (d) The voltage across the resistor is V. (e) The voltage across the inductor is half its maximum value. Figure CQ21.16arrow_forward(a) At what two times in the first period following t = 0 does the instantaneous voltage in 60-Hz AC equal Vrms ? (b) V rms?arrow_forwardIn an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forward
- An RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forwardA series RLC circuit has resistance R = 50.0 and inductance L. = 0.500 H. (a) Find the circuits capacitance C if the voltage source operates at a frequency of f = 60.0 Hz and the impedance is Z = R = 50.0 . (b) What is the phase angle between the current and the voltage?arrow_forwardA 1.5k resistor and 30-mH inductor are connected in series, as below, across a120-V(rms)ac power source oscillating at 60-Hz frequency. (a) Find the current in the circuit. (b) Find the voltage drops across the resistor and inductor. (C) Find the impedance of the circuit. (d) Find the power dissipated in the resistor. (e) Find the power dissipated in the inductor. (1) Find the power produced by the source.arrow_forward
- Review. The voltage phasor diagram for a certain series RLC circuit is shown in Figure P33.59. The resistance of the circuit is 75.0 , and the frequency is 60.0 Hz. Find (a) the maximum voltage Vmax, (b) the phase angle , (c) the maximum current, (d) the impedance, (e) the capacitance and (f) the inductance of the circuit, and (g) the average power delivered to the circuit.arrow_forwardThe emf of an ac source is given by v(t)=V0sint, where V0=100V and =200 . Find an expression that represents the output current of the source if it is connected across (a) a 20-pF capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forwardA transmission line that has a resistance per unit length of 4.50 104 /m is to be used to transmit 5.00 MW over 400 miles (6.44 105 m). The output voltage of the generator is 4.50 kV (rms). (a) What is the line loss if a transformer is used to step up the voltage to 500. kV (rms)? (b) What fraction of the input power is lost to the line under these Circumstances? (c) What difficulties would he encountered on attempting to transmit the 5.00 MW at the generator voltage of 4.50 kV (rms)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY