University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 31.68CP
CALC (a) At what angular frequency is the voltage amplitude across the resistor in an L-R-C series circuit at maximum value? (b) At what angular frequency is the voltage amplitude across the inductor at maximum value? (c) At what angular frequency is the voltage amplitude across the capacitor at maximum value? (You may want to refer to the results of Problem 31.49.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an L-R-C series circuit, L = 0.280 H and C=
4.00 µF. The voltage amplitude of the source is 120 V. aWhat
is the resonance angular frequency of the circuit? When the
source operates at the resonance angular frequency, the current
amplitude in the circuit is 1.70 A. What is the resistance R of the
resistor? (c) At the resonance angular frequency, what are the peak
voltages across the inductor, the capacitor, and the resistor?
31.33
can you please solve g, h & I?
A resistance R, capacitance C, and inductance L are connectedin series to a voltage source with amplitude V and variable angular frequencyv. If v = v0 , the resonance angular frequency, find the maximum voltage across the inductor
Chapter 31 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 31.1 - The accompanying figure shows four different...Ch. 31.2 - An oscillating voltage of fixed amplitude is...Ch. 31.3 - Rank the following ac circuits in order of their...Ch. 31.4 - Prob. 31.4TYUCh. 31.5 - How does the resonance frequency of an L-R-C...Ch. 31.6 - Each of the following four transformers has 1000...Ch. 31 - Household electric power in most of western Europe...Ch. 31 - The current in an ac power line changes direction...Ch. 31 - In an ac circuit, why is the average power for an...Ch. 31 - Equation (31.14) was derived by using the...
Ch. 31 - Prob. 31.5DQCh. 31 - Equation (31.9) says that ab = L di/dt (see Fig....Ch. 31 - Is it possible for the power factor of an L-R-C...Ch. 31 - In an L-R-C series circuit, can the instantaneous...Ch. 31 - In an L-R-C series circuit, what are the phase...Ch. 31 - When an L-R-C series circuit is connected across a...Ch. 31 - Prob. 31.11DQCh. 31 - A light bulb and a parallel-plate capacitor with...Ch. 31 - A coil of wire wrapped on a hollow tube and a...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - Prob. 31.16DQCh. 31 - An ideal transformer has N1, windings in the...Ch. 31 - An inductor, a capacitor, and a resistor are all...Ch. 31 - You want to double the resonance angular frequency...Ch. 31 - Prob. 31.1ECh. 31 - A sinusoidal current i = I cos t has an rms value...Ch. 31 - The voltage across the terminals of an ac power...Ch. 31 - A capacitor is connected across an ac source that...Ch. 31 - An inductor with L = 9.50 mH is connected across...Ch. 31 - A capacitance C and an inductance L are operated...Ch. 31 - Kitchen Capacitance. The wiring for a refrigerator...Ch. 31 - (a) Compute the reactance of a 0.450-H inductor at...Ch. 31 - (a) What is the reactance of a 3.00-H inductor at...Ch. 31 - A Radio Inductor. You want the current amplitude...Ch. 31 - A 0.180-H inductor is connected in series with a...Ch. 31 - A 250- resistor is connected in series with a...Ch. 31 - A 150- resistor is connected in series with a...Ch. 31 - You have a 200- resistor, a 0.400-H inductor, and...Ch. 31 - The resistor, inductor, capacitor, and voltage...Ch. 31 - Prob. 31.16ECh. 31 - In an L-R-C series circuit, the rms voltage across...Ch. 31 - A resistor with R = 300 and an inductor are...Ch. 31 - The power of a certain CD player operating at 120...Ch. 31 - In an L-R-C series circuit, the components have...Ch. 31 - (a) Show that for an L-R-C series circuit the...Ch. 31 - (a) Use the results of part (a) of Exercise 31.21...Ch. 31 - An L-R-C series circuit with L = 0.120 H, R = 240...Ch. 31 - An L-R-C series circuit is connected to a 120-Hz...Ch. 31 - A series ac circuit contains a 250- resistor, a...Ch. 31 - In an L-R-C series circuit the source is operated...Ch. 31 - Analyzing an L-R-C Circuit. You have a 200-...Ch. 31 - An L-R-C series circuit is constructed using a...Ch. 31 - In an L-R-C series circuit, R = 300, L = 0.400 H,...Ch. 31 - An L-R-C series circuit consists of a source with...Ch. 31 - In an L-R-C series circuit, R = 150 , L = 0.750 H,...Ch. 31 - In an L-R-C series circuit, R = 400 , L = 0.350 H,...Ch. 31 - In an L-R-C series circuit, L = 0.280 H and C =...Ch. 31 - Section 31.6 Transformers 31.34Off to Europe! You...Ch. 31 - A Step-Down Transformer. A transformer connected...Ch. 31 - A Step-Up Transformer. A transformer connected to...Ch. 31 - A coil has a resistance of 48.0 . At a frequency...Ch. 31 - Prob. 31.38PCh. 31 - An L-R-C series circuit has C = 4.80 F, L = 0.520...Ch. 31 - Five infinite-impedance voltmeters, calibrated to...Ch. 31 - CP A parallel-plate capacitor having square plates...Ch. 31 - Prob. 31.42PCh. 31 - A series circuit has an impedance of 60.0 and a...Ch. 31 - A large electromagnetic coil is connected to a...Ch. 31 - In an L-R-C series circuit, R = 300 , XC = 300 ,...Ch. 31 - At a frequency 1, the reactance of a certain...Ch. 31 - A High-Pass Filter. One application of L-R-C...Ch. 31 - A Low-Pass Filter. Figure P31.48 shows a low-pass...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - In an L-R-C series circuit the magnitude of the...Ch. 31 - In an L-R-C series circuit, the phase angle is...Ch. 31 - An L-R-C series circuit has R = 500 . L = 2.00 H,...Ch. 31 - The L-R-C Parallel Circuit. A resistor, an...Ch. 31 - The impedance of an L-R-C parallel circuit was...Ch. 31 - A 400- resistor and a 6.00-F capacitor are...Ch. 31 - An L-R-C series circuit consists of a 2.50-F...Ch. 31 - An L-R-C series circuit has R = 60.0 , L = 0.800...Ch. 31 - In an L-R-C series circuit, the source has a...Ch. 31 - In an L-R-C series ac circuit, the source has a...Ch. 31 - A resistance R, capacitance C, and inductance L...Ch. 31 - The Resonance Width. Consider an L-R-C series...Ch. 31 - An L-R-C series circuit draws 220 W from a 120-V...Ch. 31 - DATA A coworker of yours was making measurements...Ch. 31 - DATA You are analyzing an ac circuit that contains...Ch. 31 - DATA You are given this table of data recorded for...Ch. 31 - CALC In an L-R-C series circuit the current is...Ch. 31 - CALC (a) At what angular frequency is the voltage...Ch. 31 - Prob. 31.69PPCh. 31 - If the electrode oscillates between two points 20...Ch. 31 - The signal from the oscillating electrode is fed...Ch. 31 - If the frequency at which the electrode is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
116. In the pulley system shown, Block A has a mass of 10 kg and is suspended precariously at rest. Assume that...
Conceptual Physical Science (6th Edition)
In a chase scene, a movie stuntman runs horizontally off the flat roof of one building and lands on another roo...
Essential University Physics (3rd Edition)
An object is 68 cm from a plano-convex lens whose curved side has curvature radius 26 cm. The refractive index ...
Essential University Physics: Volume 2 (3rd Edition)
12. A 5.0 g coin is placed 15 cm from the center of a turntable. The coin has static and kinetic coefficients o...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. 2.What is the charge of an antielectro...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At 1000 Hz, the reactance of a 5.0-mH inductor is equal to the reactance of a particular capacitor. What is the capacitance of the capacitor?arrow_forwardAn RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forwardIn an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forward
- For an RLC series circuit, the voltage amplitude and frequency of the source are 100 V and 500 Hz, respectively; R=500 ; and L = 0.20H . Find the average power dissipated in the resistor for the following values for the capacitance: (a) C=2.0F and (b) C=2.0F .arrow_forwardAn ac source of voltage amplitude 10 V delivers electric energy at a rate of 0.80 W when its current output is 2.5 A. What is the phase angle between the emf and the current?arrow_forwardPlease give a detailed solution Thank-youarrow_forward
- A LRC series circuit consists of a 1.50 µF capacitor, a 6.00 mH inductor, and a 71.0 0 resistor that are connected across an AC voltage supply with maximum voltage of Vmax = 13.0 V. (a) What must be the frequency of the AC voltage supply for the average power delivered to the circuit to be Vvrmsrms?arrow_forwardA 5.80 µF capacitor and a 3.80 mH inductor are connected in series with an AC power source that has a frequency of 1.20 × 103 Hz and 58.0 V. Take the initial time t as zero when the instantaneous voltage equals peak voltage of zero. (a) What is the instantaneous voltage at t = 1.37 x 10-4 s? 31.275 What is the expression for the sinusoidal behavior of the generator's voltage? What units should you use for the argument of the sine function? V (b) Determine the instantaneous current when t = 1.37 x 10-4 s .105 What is the phase angle between the instantaneous current and instantaneous voltage in an RLC circuit where R = 0? How does this affect the expression for the instantaneous current? Aarrow_forwardAn RLC series circuit has a 1.08 kN resistor, a 160 µH inductor, and an 18.0 nF capacitor. (a) Find the power factor at f = 7.50 kHz. (b) What is the phase angle (in degrees) at this frequency? (c) If the voltage source has V, rms 408 V, what is the average power (in W) at this frequency? W (d) Find the average power (in W) at the circuit's resonant frequency. Warrow_forward
- Problem 4: A 1.3-kN resistor and 25.9-mH inductor are connected in series to a Vrms = 120 V AC power source oscillating at a frequency of f= 60 Hz. The voltage as a function of time is given by V= Vocos(ot), where Vo is the amplitude, o is the angular frequency. E A 10% Part (a) What is the amplitude of the source voltage, in volts? - A 10% Part (b) Enter an expression for the impedance of the circuit in terms of R, L, f, and a. EA 10% Part (c) Enter an expression for the tangent of the phase constant of the circuit in terms of R, L, f, and r. a 10° (d) Assume the time dependence of the source voltage is given by V= Vocos377t, where the amplitude Vo is what you calculated in part (a) and the angular frequency is (2n)60 rad/s 377 rad/s. Select the correct expression for the current in the circuit. - a 10% Part (e) Find the current in the circuit, in amperes, at time t = 4.9 s. H a 10% Part (f) Find the voltage drop across the resistor, in volts, at time t= 4.9 s. I A 10% Part (g) Find…arrow_forwardA 402 resistor and a 50mH inductor are connected in series across a Vrms f = 60HZ. Recall 120V AC power source with v(t) = Vo sin (wt), i(t) = I, sin (wt – 4). (a) Sketch the circuit described above. (b) Find the amplitude Vo. (c) Determine the impedance of this RL circuit. (d) Give an expression for the instantaneous current in the circuit i(t). Is this current leading or lagging the source voltage? (e) A 5µF capacitor is added in series to the circuit. What is the impedance of this RLC circuit? (f) Give an expression for the instantaneous current in this RLC circuit i(t). Is this current leading or lagging the source voltage? (g) What is the resonance frequency fo of the above RLC circuit?arrow_forwardAn AC voltage with an amplitude of 100 V is applied to a series combination of 200 F capacitor, a 100-mH inductor, and a 20.0- 1 resistor. Calculate the power dissipation and the power factor for frequencies of (a) 60.0 Hz and (b) 50.0 Hz.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY