University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31.4, Problem 31.4TYU
(a)
To determine
The source from which the energy is extracted.
(b)
To determine
The destination to which the energy goes to.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an RLC circuit, L = 5.0 mH, C = 6.0μF, and R = 200 Ω.
(a) Is the circuit underdamped, critically damped, or overdamped?
(b) If the circuit starts oscillating with a charge of 3.0 × 10−3 C on the capacitor, how much energy has been dissipated in the resistor by the time the oscillations cease?
An L-C series circuit has C = 4.80 mF, and L = 0.520 H. The capacitor is fully charged,and then a switch is closed.(a) Calculate the frequency of the oscillation of this circuit.A resistor is then connected in series with both L and C to create an L-R-C seriescircuit.(b) Calculate for which values of R the circuit is overdamped, for which it is criticallydamped, and for which it is underdamped.(c) Draw a plot of the charge present on the plates of the capacitor as a function oftime for each of the three previous cases.The same C and L are now connected to a source of alternating voltage of amplitudeVrms = 56.0 V. The source is operated at the resonance frequency of the circuit. Thevoltage across the capacitor has amplitude VC, rms = 80.0 V.(d) Calculate the resonance frequency.(e) Calculate the value of R for the resistor in the circuit.
A 7.50 nF capacitor is charged to 12.0 V, then disconnectedfrom the power supply and connected in series through a coil. The periodof oscillation of the circuit is then measured to be 8.60 * 10^-5 s.Calculate:the total energy of the circuit
Chapter 31 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 31.1 - The accompanying figure shows four different...Ch. 31.2 - An oscillating voltage of fixed amplitude is...Ch. 31.3 - Rank the following ac circuits in order of their...Ch. 31.4 - Prob. 31.4TYUCh. 31.5 - How does the resonance frequency of an L-R-C...Ch. 31.6 - Each of the following four transformers has 1000...Ch. 31 - Household electric power in most of western Europe...Ch. 31 - The current in an ac power line changes direction...Ch. 31 - In an ac circuit, why is the average power for an...Ch. 31 - Equation (31.14) was derived by using the...
Ch. 31 - Prob. 31.5DQCh. 31 - Equation (31.9) says that ab = L di/dt (see Fig....Ch. 31 - Is it possible for the power factor of an L-R-C...Ch. 31 - In an L-R-C series circuit, can the instantaneous...Ch. 31 - In an L-R-C series circuit, what are the phase...Ch. 31 - When an L-R-C series circuit is connected across a...Ch. 31 - Prob. 31.11DQCh. 31 - A light bulb and a parallel-plate capacitor with...Ch. 31 - A coil of wire wrapped on a hollow tube and a...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - Prob. 31.16DQCh. 31 - An ideal transformer has N1, windings in the...Ch. 31 - An inductor, a capacitor, and a resistor are all...Ch. 31 - You want to double the resonance angular frequency...Ch. 31 - Prob. 31.1ECh. 31 - A sinusoidal current i = I cos t has an rms value...Ch. 31 - The voltage across the terminals of an ac power...Ch. 31 - A capacitor is connected across an ac source that...Ch. 31 - An inductor with L = 9.50 mH is connected across...Ch. 31 - A capacitance C and an inductance L are operated...Ch. 31 - Kitchen Capacitance. The wiring for a refrigerator...Ch. 31 - (a) Compute the reactance of a 0.450-H inductor at...Ch. 31 - (a) What is the reactance of a 3.00-H inductor at...Ch. 31 - A Radio Inductor. You want the current amplitude...Ch. 31 - A 0.180-H inductor is connected in series with a...Ch. 31 - A 250- resistor is connected in series with a...Ch. 31 - A 150- resistor is connected in series with a...Ch. 31 - You have a 200- resistor, a 0.400-H inductor, and...Ch. 31 - The resistor, inductor, capacitor, and voltage...Ch. 31 - Prob. 31.16ECh. 31 - In an L-R-C series circuit, the rms voltage across...Ch. 31 - A resistor with R = 300 and an inductor are...Ch. 31 - The power of a certain CD player operating at 120...Ch. 31 - In an L-R-C series circuit, the components have...Ch. 31 - (a) Show that for an L-R-C series circuit the...Ch. 31 - (a) Use the results of part (a) of Exercise 31.21...Ch. 31 - An L-R-C series circuit with L = 0.120 H, R = 240...Ch. 31 - An L-R-C series circuit is connected to a 120-Hz...Ch. 31 - A series ac circuit contains a 250- resistor, a...Ch. 31 - In an L-R-C series circuit the source is operated...Ch. 31 - Analyzing an L-R-C Circuit. You have a 200-...Ch. 31 - An L-R-C series circuit is constructed using a...Ch. 31 - In an L-R-C series circuit, R = 300, L = 0.400 H,...Ch. 31 - An L-R-C series circuit consists of a source with...Ch. 31 - In an L-R-C series circuit, R = 150 , L = 0.750 H,...Ch. 31 - In an L-R-C series circuit, R = 400 , L = 0.350 H,...Ch. 31 - In an L-R-C series circuit, L = 0.280 H and C =...Ch. 31 - Section 31.6 Transformers 31.34Off to Europe! You...Ch. 31 - A Step-Down Transformer. A transformer connected...Ch. 31 - A Step-Up Transformer. A transformer connected to...Ch. 31 - A coil has a resistance of 48.0 . At a frequency...Ch. 31 - Prob. 31.38PCh. 31 - An L-R-C series circuit has C = 4.80 F, L = 0.520...Ch. 31 - Five infinite-impedance voltmeters, calibrated to...Ch. 31 - CP A parallel-plate capacitor having square plates...Ch. 31 - Prob. 31.42PCh. 31 - A series circuit has an impedance of 60.0 and a...Ch. 31 - A large electromagnetic coil is connected to a...Ch. 31 - In an L-R-C series circuit, R = 300 , XC = 300 ,...Ch. 31 - At a frequency 1, the reactance of a certain...Ch. 31 - A High-Pass Filter. One application of L-R-C...Ch. 31 - A Low-Pass Filter. Figure P31.48 shows a low-pass...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - In an L-R-C series circuit the magnitude of the...Ch. 31 - In an L-R-C series circuit, the phase angle is...Ch. 31 - An L-R-C series circuit has R = 500 . L = 2.00 H,...Ch. 31 - The L-R-C Parallel Circuit. A resistor, an...Ch. 31 - The impedance of an L-R-C parallel circuit was...Ch. 31 - A 400- resistor and a 6.00-F capacitor are...Ch. 31 - An L-R-C series circuit consists of a 2.50-F...Ch. 31 - An L-R-C series circuit has R = 60.0 , L = 0.800...Ch. 31 - In an L-R-C series circuit, the source has a...Ch. 31 - In an L-R-C series ac circuit, the source has a...Ch. 31 - A resistance R, capacitance C, and inductance L...Ch. 31 - The Resonance Width. Consider an L-R-C series...Ch. 31 - An L-R-C series circuit draws 220 W from a 120-V...Ch. 31 - DATA A coworker of yours was making measurements...Ch. 31 - DATA You are analyzing an ac circuit that contains...Ch. 31 - DATA You are given this table of data recorded for...Ch. 31 - CALC In an L-R-C series circuit the current is...Ch. 31 - CALC (a) At what angular frequency is the voltage...Ch. 31 - Prob. 31.69PPCh. 31 - If the electrode oscillates between two points 20...Ch. 31 - The signal from the oscillating electrode is fed...Ch. 31 - If the frequency at which the electrode is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an RLC series circuit, can the voltage measured across the capacitor be greater than the voltage of the source? Answer the same question for the voltage across the inductor.arrow_forwardIn Figure 14.12, =12V , L = 20 mH, and R=5.0. Determine (a) the time constant of the circuit, (b) the initial current through the resistor, (C) the final current through the resistor, (d) the current through the resistor when t=2L , and (e) the voltages across the inductor and the resistor when t=2L .arrow_forwardIn an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forward
- Can a circuit e1eent have both capacitance and inductance?arrow_forwardAn inductor and a resistor are connected in series across an AC generator, as shown in Figure CQ21.16. Immediately after the switch is closed, which of the following statements is true? (a) The current is V/R. (b) The voltage across the inductor is zero. (c) The current in the circuit is zero. (d) The voltage across the resistor is V. (e) The voltage across the inductor is half its maximum value. Figure CQ21.16arrow_forwardA circuit consists of an inductor attached in series to a resistor in series to a battery of voltage ?, as shown. The inductance, L, is 100 mH, the resistance, R, is 6 Ω, and the voltage of the battery is 12 V. At t=0 seconds the switch is closed. (A)What is the current (in A) in the circuit after 13.3 milliseconds? (B)What is the voltage (in V) across the inductor at t = 13.3 milliseconds? (C)What is the voltage (in V) across the resistor at t = 13.3 milliseconds?arrow_forward
- A resonant circuit consists of an ideal plate capacitor (with a capacitance of 4.7 × 10^−4 F) and an ideal inductor. The maximum voltage measured at the capacitor is 150V. (1) What is the total energy stored in this circuit? (2) Find a value for the inductor if the current must not be greater than 2Ampsarrow_forwardIf the current in an inductor is tripled, by what factor is the stored energy multiplied?arrow_forwardAn LC circuit contains a 20 mH inductor and a 50 µF capacitor with an initial charge of 10 mC. The resistance of the circuit is negligible. Let the instant the circuit is closed be t = 0. (a) What is the total energy stored initially? Is it conserved during LC oscillations?arrow_forward
- A circuit has a resistor with resistance equal to 8 Ω and an inductor with inductance 8e-4 H. What is the average power dissipated in this circuit if the power supply has the following voltage, 7sin(5t)? None of the above 8.32 W 53.3 W 3.06 W 1.12 Warrow_forwardIf you triple the inductance of an inductor, by what factor will the amount of energy it can store increase?arrow_forwardAfter you disconnect the DC power supply from an RLC circuit, it oscillates at a frequency of f. Then you remake the circuit with the same inductor and capacitor but now with 2 resistors in series instead of just one, so that the new circuit has twice the resistance. Despite the resistance having doubled, the circuit can still be said to be underdamped. What is the new oscillation frequency that you observe when you power the new circuit from the DC power supply and disconnect it? O less than f impossible to say without knowing whether the inductance is bigger or smaller than the resistance exactly equal to f greater than farrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning