Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 94GP
(a)
To determine
The average de Broglie wavelength of the helium atom.
(b)
To determine
To determine:- The average separation between the helium atom in the jar.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the de Broglie wavelength of an oxygen molecule at 25°C? The energy of oxygen molecules E = 1.5 kT.Compare this with the average distance between oxygen molecules in a gas state of 1 bar, 25°C (l = V^1/3 ).
Recall from Section 14.3 that the average kinetic energy of an atom in a monatomic ideal gas is given by KE=(3/2)kT, where k
= 1.38 x 10-23 J/K and T is the Kelvin temperature of the gas. Determine the de Broglie wavelength of a helium atom
(mass = 6.65 x 10-27 kg) that has the average kinetic energy at room temperature (292 K).
Number i 7.38E-11
Units
m
-. (a) Find the de Broglie wavelength of a nitrogen molecule
in air at room temperature (293 K). (b) The density
of air at room temperature and atmospheric pressure
is 1.292 kg/m³. Find the average distance between air
molecules at this temperature and compare with the
de Broglie wavelength. What do you conclude about the
importance of quantum effects in air at room temper-
ature? (c) Estimate the temperature at which quantum
effects might become important.
Chapter 30 Solutions
Physics (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a balloon filled with helium gas at room temperature and atmospheric pressure. Calculate (a) the average de Broglie wavelength of the helium atoms and (b) the average distance between atoms under these conditions. The average kinetic energy of an atom is equal to (3/2)kT, where k is the Boltzmann constant. (c) Can the atoms be treated as particles under these conditions? Explain.arrow_forwardThe velocity of an electron is known to be 1.000×105 m/s, with an uncertainty of Av = 1.00×102 m/s. (a) What is the minimum uncertainty in the electron's position, Av, in meters? (b) How does this compare to the de Broglie wavelength of the electron? (c) One of your professors (m = 75.0 kg) is pacing at the front of the classroom, and you measure their velocity to an uncertainty of Av = 0.100 m/s. What is the minimum uncertainty in a measurement of their position? (d) How does this compare to the height of your professor?arrow_forwardConsider an oxygen (O2) molecule in a bottle of air. Imagine that at a certain time, we locate the molecule along the x axis to within an uncertainty of 0.1 nanometers. a) What is the minimum uncertainty in the molecule's x-velocity required by the Heisenberg Uncertainty Principle? (Hint: the answer is about 10 m/s) b) How does this compare (roughly) to the magnitude of the molecule's average x-velocity due to its thermal motion at room temperature? (Hint: the answer is delta v << average thermal speed) (Hint: Avogadro's number of oxygen molecules has a mass of about 32 grams. At an absolute temperature T, a molecule has an average kinetic energy of 1.5 * kB * T, where kB is Boltzmann's constant. Room temperature is about 295 K).arrow_forward
- Answer the following. (a) What is the surface temperature of Betelgeuse, a red giant star in the constellation of Orion, which radiates with a peak wavelength of about 970 nm? K (b) Rigel, a bluish-white star in Orion, radiates with a peak wavelength of 145 nm. Find the temperature of Rigel's surface. Karrow_forwardAnswer the following. (a) What is the surface temperature of Betelgeuse, a red giant star in the constellation of Orion, which radiates with a peak wavelength of about 970 nm? K(b) Rigel, a bluish-white star in Orion, radiates with a peak wavelength of 145 nm. Find the temperature of Rigel's surface. Karrow_forwardChemists use infrared absorption spectra to identify chemicals in a sample. In one sample, a chemist finds that light of wavelength 5.8 um is absorbed when a molecule makes a transition from its ground harmonic oscillator level to its first excited level. (a) Find the energy of this transition. (b) If the molecule can be treated as a harmonic oscillator with mass 5.6 * 10-26 kg, find the force constant.arrow_forward
- An atom of iron has a radius of 156. pm and the average orbital speed of the electrons in it is about ×5.7*10^7 m/s. Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of iron. Write your answer as a percentage of the average speed, and round it to 2 significant digits.arrow_forwardChemists use infrared absorption spectra to identify chemicals in a sample. In one sample, a chemist finds that light of wavelength 5.8 mm is absorbed when a molecule makes a transition from its ground harmonic oscillator level to its first excited level. (a) Find the energy of this transition. (b) If the molecule can be treated as a harmonic oscillator with mass 5.6 * 10-26 kg, find the force constant.arrow_forwardConsider photons at temperature T = 300K in a cubic box of volume 1 m' with periodic boundary conditions. a) Find the total number of photons in the lowest orbital state. What is the total energy of these photons? Hint: The 1-particle energy of photons is ɛ(k,s)=ħck = hc , independent of polarization s. Consider the Bose-Einstein distribution function (with u= 0) for the lowest-energy orbital states 2л k, = (1,0,0), k, =(0,1,0), k, =(0,0,1). Find the total number of photons that occupy L L L these states, taking into account that each of the orbital states has 2 polarizations s. b) Find the number of photons in a single orbital state with wavelength 2 = 5000 Å. What is the total energy of these photons?arrow_forward
- Calculate the classical mean kinetic energy for the electrons in sodium at room temperature. From this, determine their de Broglie wavelength 2. For a classical description to be valid, we must require that λ is much smaller than the mean separation d of the particles. Show that this is not the case, given that the electron density in sodium is 2.65x1028 m³.arrow_forwardA) Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one six hundredth of the speed of light (c/600). Enter at least 4 significant figures. (I got the answer 949.4 pm but it is wrong, please help) B) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 230.1 pm.arrow_forwardFind the typical de Broglie wavelength associated with a He atom in helium gas at room temperature (27 °C) and 1 atm pressure; and compare it with the mean separation between two atoms under these conditions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON