Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 30, Problem 59PCE
To determine
The direction of propagation of the scattered electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A satellite in Earth orbit maintains a panel of solar cells of area 2.60 m2 perpendicular to the direction of the Sun’s light rays. The intensity of the light at the panel is 1.39 kW/m2. (a) At what rate does solar energy arrive at the panel? (b) At what rate are solar photons absorbed by the panel? Assume that the solar radiation is monochromatic, with a wavelength of 550 nm, and that all the solar radiation striking the panel is absorbed. (c) How long would it take for a “mole of photons” to be absorbed by the panel?
Roughly what frequency and what kind of light would you need to be able to
separate an electron from a proton?
Of = 1018 H z, x ray
f = 1014 H z, visible light
Of = 102° H z, y ray
O f = 10° H z, microwave
e. X-rays having a wavelength of 0.100 nanometer are scattered off initially
stationary electrons, at an angle of 40.0⁰.
(i) Calculate the wavelength of the scattered electromagnetic radiation
(ii) What is the percent change in the wavelength of the X-rays due to
scattering at this angle?
Chapter 30 Solutions
Physics (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Similar questions
- X-rays are scattered from a target at an angle of 54.9° with respect to the direction of the incident beam. What is the wavelength shift (in m) of the scattered x-rays? What If? For what scattering angle (in degrees) will the wavelength shift of x-rays be exactly double that found in part (a)?arrow_forwardThe most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV). (a) (10) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J. (b) What is the wavelength? 2. An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15° << 1°. The indices of refraction in free space and the atmosphere are n0 o 1.00000 ..., and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near r ® 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations. (a) When the ISS is directly…arrow_forwardGive the rest mass (in kg) of a photon with wavelength 648.0 nm.arrow_forward
- Radiation from a distant neutron star is found by a satellite far from Earth to have wavelength λ = 3 nm. a) What is the ratio δλ/λ, where δλ is the difference with respect to the measurement by a detector on the surface of the Earth? The Schwarzschild radius of the Earth is 8.7 mm, while its actual radius is 6.4 × 106 m. b) What is the ratio δ′ λ/λ, where δ′ λ is the difference with respect to the wavelength of the same radiation at the time of emission from the neutron star’s surface? Assume that the neutron star’s actual radius is three times its (typically 4 km) Schwarzschild radius.arrow_forwardA typical Blu-Ray player uses a gallium nitride (GaN) diode laser with a wavelength of 405.0 nm. What is the energy (in J) of one Blu-Ray photon?arrow_forwardA regular LED light bulb continuously emits 10.0 W of light uniformly in all directions. A man stands so that his eyes are 5.00 m away from this light bulb and he is looking directly at the light bulb. There are no other sources of light in this room. (a) What is the irradiance of this light in W/m2 just before entering this man's eyes? (b) If each pupil of this man is contracted to a radius of 2.00 mm, what is the total power in W of the light entering each eye? (c) A human receives 3300 J of usable energy after eating one blueberry. How long would this man have to stare at this light bulb in order to take into his eyes through the pupils the same amount of energy as eating a blueberry? Don't forget that he has two eyes! (Note that far more energy from the light is hitting his skin, but that is not what we care about here.)arrow_forward
- Roughly what frequency and what kind of light would you need to be able to separate an electron from a proton? O f = 101° H z, x ray f = 1014 H z, visible light O f = 102° H z, y ray %D O f = 10° H z, microwavearrow_forwardThe intensity of electromagnetic radiation from the sun reaching the earth’s upper atmosphere is 1.37 kW/m2. Assuming an average wavelength of 680 nm for this radiation, find the number of photons per second that strike a 1.00 m2 solar panel directly facing the sun on an orbiting satellite.arrow_forward14 GO A light detector has an ab- E (n) sorbing area of 2.00 x 10-6 m2 and absorbs 50% of the incident light, E, which is at wavelength 600 nm. The detector faces an isotropic source, 12.0 m from the source. The energy E emitted by the source versus time t is given in Fig. 38-26 (E, = 7.2 nJ, t, = 2.0 s). At what rate are photons o absorbed by the detector? t (s) Figure 38-26 Problem 14.arrow_forward
- When ultraviolet radiation of 9.5 X 10 14 Hz is incident on a metal sheet, photoelectrons are produced that leave at a maximum speed of one thousandth of the speed of light in a vacuum. Calculate the threshold frequency of the metal.arrow_forwardBy Thomson's time, it was known that excited atoms emit light waves of only certain frequencies. In his model, the frequency of emitted light is the same as the oscillation frequency of the electron or electrons in the atom. What would the radius of a Thomson-model atom have to be for it to produce red light of frequency 4.55×1014 HzHz ? (see Appendix FF from the textbook for data about the electron)arrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.32 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 628 nm? 1.98 eV (c) What is the wavelength (in m) of a photon with an energy of 1.13 eV? 1.76*10**-6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning