Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 90GP
To determine
The temperature of black body that have the same peak frequency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 30 Solutions
Physics (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The momentum of light, as it is for particles, is exactly reversed when a photon is reflected straight back from a mirror, assuming negligible recoil of the mirror. The change in momentum is twice the photon’s incident momentum, as it is for the particles. Suppose that a beam of light has an intensity 1.0kW/m2 and falls on a -2.0-m2 area of a minor and reflects from it. (a) Calculate the energy reflected in 1.00 s. (b) What is the momentum imparted to the mirror? (c) Use Newton’s second law to find the force on the mirror. (d) Does the assumption of no-recoil for the mirror seem reasonable?arrow_forwardThe radiant energy from the sun reaches its maximum at a wavelength of about 500.0 nm. What is the approximate temperature of the sun’s surface?arrow_forward(a) How far away must you be from a 650-kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume no reflections or absorption, as if you were in deep outer space. (b) Discuss the implications for detecting intelligent life in other solar systems by detecting their radio broadcasts.arrow_forward
- (a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?arrow_forwardSolar wind (radiation) that is incident on the top of Earth’s atmosphere has an average intensity of 1.3kW/ m2. Suppose that you are building a solar sail that is to propel a small toy spaceship with a mass of 0.1 kg in the space between the International Space Station and the moon. The sail is made from a very light material, which perfectly reflects the incident radiation. To assess whether such a project is feasible, answer the following questions, assuming that radiation photons are incident only in normal direction to the sail reflecting surface. (a) What is the radiation pressure (force per m2) of the radiation falling on the mirror-like sail? (b) Given the radiation pressure computed in (a), what will be the acceleration of the spaceship when the sail has of an area of 10.0 m2 ? (c) Given the acceleration estimate in (b), how fast will the spaceship be moving after 24 hours when it starts from rest?arrow_forwardWhich type of radiation is most suitable for the observation of diffraction patterns on crystalline solids; radio waves, visible light, or X-rays? Explain.arrow_forward
- An X-ray tube accelerates an electron with an applied voltage of 50 kV toward a metal target, (a) What is the shortest-wavelength X-ray radiation generated at the target? (b) Calculate the photon energy in eV. (c) Explain the relationship of the photon energy to the applied voltage.arrow_forward(a) What is the wavelength of a photon that has a momentum of 5.001029kgm/s ? (b) Find its energy in eV.arrow_forward(a) Calculate the number of photoelectrons per second ejected from a 1.00-mm2 area of sodium metal by 500-nm M radiation having an intensity of 1.30 kW/m2 (the intensity of sunlight above the Earth's atmosphere). (b) Given that the binding energy is 2.28 eV, what power is carried away by the electrons? (c) The electrons carry away less power than brought in by the photons. Where does the other power go? How can it be recovered?arrow_forward
- Is the photoelectric effect a consequence of the wave character of radiation or is it a consequence of the particle character of radiation? Explain briefly.arrow_forward(a) Find the momentum of a 4.00-cm-wavelength microwave photon. (b) Discuss why you expect the answer to (a) to be very small.arrow_forwardA laser with a power output of 2.00 mW at a 400-nm wavelength is used to project a beam of light onto a calcium photoelectrode. (a) How many photoelectrons leave the calcium surface per second? (b) What power is carried away by ejected photoelectrons, given that the work function of calcium is 2.31 eV? (c) Calculate the photocurrent. (d) If the photoelectrode suddenly becomes electrically insulated and the setup of two electrodes in the circuit suddenly starts to act like a 2.00-pF capacitor, how long will current flow before the capacitor voltage stops it?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax