Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 22PCE
To determine
To determine:- The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The work function of gold is 4.58 eV. What frequency of light must be used to eject electrons from a gold surface with a maximum kinetic energy of 6.48 x 10^-19 J?
What is the minimum frequency in (THz) of light needed to eject electrons off a metal with a work function of 10.00 eV?
The following table lists the work functions of a few common
metals, measured in electron volts.
Metal
(eV)
Cesium
1.9
Potassium 2.2
Sodium
2.3
Lithium
2.5
Calcium
3.2
Copper
4.5
Silver
4.7
Platinum
5.6
Part A
Light with a wavelength of 190 nm is incident on a metal surface. The most energetic electrons emitted from the surface are measured to have 4.0 eV of
kinetic energy. Which of the metals in the table is the surface most likely to be made of?
▸ View Available Hint(s)
O cesium
potassium
sodium
lithium
Using these data, answer the following questions about the
photoelectric effect.
000
calcium
copper
silver
O platinum
Submit
Part B
Of the eight metals listed in the table, how many will eject electrons when a green laser (g = 510 nm) is shined on them?
▸ View Available Hint(s)
○ 0
1
○ 2
3
4
5
6
○ 7
○ 8
Submit
Part C
Light with some unknown wavelength is incident on a piece of copper. The most energetic electrons emitted from the copper have 2.7 eV of kinetic energy.
the copper is…
Chapter 30 Solutions
Physics (5th Edition)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When light with a wavelength of 219 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.32×10−193.32×10−19 J. Determine the wavelength of light that should be used to triple the maximum kinetic energy of the electrons ejected from this surface.arrow_forwardLight of wavelength 211 nm is shone on gold, which has a work function of 5.31 eV. What is the maximum kinetic energy (in eV) of the electrons emitted from the metal? Assume the light is traveling through a vacuum.arrow_forwardIn developing night-vision equipment, you need to measure the work function for a metal surface, so you perform a photoelectric-effect experiment. You measure the stopping potential V0 as a function of the wavelength l of the light that is incident on the surface. You get the results in the table. In your analysis, you use c = 2.998 x 108m/s and e = 1.602 x 10-19 C, which are values obtained in other experiments. (a) Select a way to plot your results so that the data points fall close to a straight line. Using that plot, find the slope and y-intercept of the best-fit straight line to the data. (b) Use the results of part (a) to calculate Planck’s constant h (as a test of your data) and the work function (in eV) of the surface. (c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of light is required to produce photoelectrons with kinetic energy 10.0 eV?arrow_forward
- It takes 492 kJ of energy to remove one mole of electrons from the atoms on the surface of solid gold. What is the speed of the ejected electrons (in m/s), if the incoming light has a wavelength of 200.0 nmarrow_forwardLight with a frequency of 3.17 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 5.7 eV. What is the work function of the metal?arrow_forwardA strange metallic rock is found and is being tested. Suppose that light with a frequency of 9.40 ✕ 1014 Hz is incident upon the rock and a stopping potential of 1.50 V is needed to reduce the electron current to zero in a photoelectric experiment.What is the minimum frequency of light for which electrons are still ejected from the surface of this material? Hzarrow_forward
- 3. A. 279.7 kJ of energy are required to remove one mole of electrons from one mole of lithium atoms. What is the maximum wavelength of light that can remove one electron from one lithium atom? (h = 6.626 x 1034J•sec, c = 3.0 x 10* m/s) B. Assume that a hydrogen atom's electron has been excited to the n= 5 energy level. How many different wavelengths of light can be emitted as this excited electron loses energy? Include a diagram to support your answer.arrow_forwardb. An electron and a photon has the same wavelength of 0.21 nm. Calculate the momentum and energy (in eV) of the electron and the photon. (Given c =3.00x108 m s-1, h =6.63 x 1034 J s, me=9.11 x 10-31 kg, mp=1.67 x 1027 kg and e=1.60x1019 C)arrow_forwardWhen light with a wavelength of 208 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.59 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.arrow_forward
- When developing a night vision night vision equipment, you need to measure the work function for the surface of a metal, so you perform a photoelectric photoelectric effect experiment. You measure the cutoff potential V0 as a function of of the wavelength À of light striking the surface. The results appear in the following table. In your analysis, you use c = 2.998 X 10^8 m/s and e = 1.602 X 10^-19 C, which are values obtained in other experiments. (a) Select a way to represent your results graphicallyso that the data points are close to a straight line. Using this graph, find the slope and the intercept y of the straight line that best fits the data. (b) Use the results from (a) to calculate the Planck constant h (as a test of your data) and the work function ( in and V) of the surface. ( c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of wavelength of light is required to produce photoelectrons with a kinetic energy…arrow_forwarda)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg Express your answer to two significant figures and include the appropriate units.arrow_forwardSolar radiation falls on Earth's surface at a rate of 1900 W/m². Assuming that the radiation has an average wavelength of 580 nm, how many photons per square meter per second fall on the surfaces? The speed of light is 3 × 10° m/s and Planck's constant is 6.62607 × 10-34 J. s. Answer in units of photon/m² · s. 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning