Concept explainers
(a)
The nucleus A.
(a)
Answer to Problem 18P
The nucleus A is
Explanation of Solution
The reaction is,
Thus, the nucleus A is
Conclusion:
The nucleus A is
(b)
The nucleus B.
(b)
Answer to Problem 18P
The nucleus B is
Explanation of Solution
The reaction is,
Thus, the nucleus B is
Conclusion:
The nucleus B is
(c)
The nucleus C.
(c)
Answer to Problem 18P
The nucleus C is
Explanation of Solution
The reaction is,
Thus, the nucleus C is
Conclusion:
The nucleus C is
(d)
The nucleus D.
(d)
Answer to Problem 18P
The nucleus D is
Explanation of Solution
The reaction is,
Thus, the nucleus D is
Conclusion:
The nucleus D is
(e)
The nucleus E.
(e)
Answer to Problem 18P
The nucleus E is
Explanation of Solution
The reaction is,
Thus, the nucleus E is
Conclusion:
The nucleus E is
(f)
The nucleus F.
(f)
Answer to Problem 18P
The nucleus F is
Explanation of Solution
The reaction is,
Thus, the nucleus F is
Conclusion:
The nucleus F is
Want to see more full solutions like this?
Chapter 30 Solutions
College Physics
- (a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forward(a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward(a) Calculate the energy released in the neutron- Induced fission reaction n+235U92Kr+142Ba+2n , given m(92Kr) = 91.926269 u and m(142Ba)= 141.916361 u. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forward
- (a) How many 239Pu nuclei must fission to produce a 20.0kT yield, assuming 200 MeV per fission? (b) What is the mass of this much 239Pu?arrow_forwardThe electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical power. What is the thermal nuclear power output in megawatts? How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? What mass of 235U is fissioned in 1 year of full-power operation?arrow_forward(a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward
- (a) Write the complete decay equation for 90Sr, a major waste product of nuclear reactors, (b) Find the energy released in the decay.arrow_forwardNeutrons from a source (perhaps the one discussed in the preceding problem) bombard natural molybdenum, which is 24 percent 98Mo. What is the energy output of the reaction 98Mo+n99Mo+ ? The mass of 98MB is given in Appendix A: Atomic Masses, and that of 99Mo is 98.907711 u.arrow_forward(a) Calculate the energy released in the neutroninduced fission reaction n+235U92Kr+142Ba+2n, given m(92Kr)=91.926269 and m(142Ba)=141.916361u. (b) Confirm that the total number at nucleons and total charge are conserved in this reaction.arrow_forward
- What is the mass of 60Co in a cancer therapy transillumination unit containing 5.00 kCi of 60Co?arrow_forwardSuppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forward(a) Calculate the energy released in the neutron- induced fission n+238U96Sr+140Xe+3n , given m(96Sr)=95.921750uand m(140Xe)=139.92164 . This result is about 6 MeV greater than the result for spontaneous fission. Why? Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning