College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 11CQ
To determine
The baryon number of kaons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are particles called bottom mesons or B-mesons.One of them is the B− meson, which has a single negative charge; its baryon number is zero, as are its strangeness, charm, and topness. It has a bottomness of −1 . What is its quark configuration?
There are particles called bottom mesons orB-mesons. One of them is the B- meson, which has a single negative charge; its baryon number is zero, as are its strangeness, charm, and topness. It has a bottomness of -1 . What is its quark configuration?
One proposed proton decay is p+ Se+ + π0 , which violates both baryon and lepton number conservation, so the proton lifetime is expected to be very long. Suppose the proton half-life were 1.0 x 1018 y. (a) Calculate the energy deposited per kilogram of body tissue (in rad) due to the decay of the protons in your body in one year. Model your body as consisting entirely of water. Only the two protons in the hydrogen atoms in each H2O molecule would decay in the manner shown; do you see why? Assume that the π0 decays to two g rays, that the positron annihilates with an electron, and that all the energy produced in the primary decay and these secondary decays remains in your body. (b) Calculate the equivalent dose (in rem) assuming an RBE of 1.0 for all the radiation products, and compare with the 0.1 rem due to the natural background and the 5.0 rem guideline for industrial workers. Based on your calculation, can the proton lifetime be as short as 1.0 x 1018 y?
Chapter 30 Solutions
College Physics
Ch. 30.6 - Prob. 30.1QQCh. 30.6 - Prob. 30.2QQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQ
Ch. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Prob. 15PCh. 30 - Find the energy released in the fusion reaction...Ch. 30 - Find the energy released in the fusion reaction...Ch. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37APCh. 30 - Prob. 38APCh. 30 - Prob. 39APCh. 30 - Prob. 40APCh. 30 - Prob. 41APCh. 30 - Prob. 42APCh. 30 - Prob. 43APCh. 30 - Prob. 44APCh. 30 - Prob. 45APCh. 30 - Prob. 46APCh. 30 - Prob. 47APCh. 30 - Prob. 48APCh. 30 - Prob. 49APCh. 30 - Prob. 50AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward(a) Is a hadron always a baryon? (b) Is a baryon always a hadron? (c) Can an unstable baryon decay into a meson, leaving no other baryon?arrow_forward
- (a) The following decay is mediated by the electroweak force: pn+e++ve Draw the Feynman diagram for the decay. (b) The following scattering is mediated by the electroweak force: ve+eve+e Draw the Feynman diagram for the scattering.arrow_forward(a) Three quarks form a baryon. How many combinations of the six known quarks are there if all combinations are possible? (b) This number is less than the number of known baryons. Explain why.arrow_forwardWhen an electron and positron collide at the SLAC facility, they each have 50.0-GeV kinetic energies. What is the total collision energy available, taking into account the annihilation energy? Note that the annihilation energy is insignificant, because the electrons are highly relativistic.arrow_forward
- (a) Verify from its quark composition that the particle could be an excited state of the proton. (b) There is a spread of about 100 MeV in the decay energy of the interpreted as uncertainty due to its short lifetime. What is its approximate lifetime? (c) Does its decay proceed via the strong or weak force?arrow_forward(a) Find the charge, baryon number, strangeness, charm, and bottomness of the particle from its quark composition. (b) Do the same for the particle.arrow_forward(a) Do all particles having strangeness also have at least one strange quark in them? (b) Do all hadrons with a strange quark also have nonzero strangeness?arrow_forward
- What is the general quark composition of a baryon? Of a meson?arrow_forwardThe decay mode of the negative muon is (a) Find the energy released in MeV. (b) Verify that charge and lepton family numbers are conserved.arrow_forwardthe baryon number p + p → 2y. Determine (b) the baryon number and (c) the electron-lepton number of the reaction N → A° + K¯. Determine of the reactionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning