Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 17P

You are working for a company that manufactures motors and generators. At the end of your first day of work, your supervisor explains to you that you will be assigned to a team that is designing a new homopolar generator. You have no idea what that is, but agree wholeheartedly to the assignment. At home that evening, you go online to learn about the homopolar generator and find the following. The homopolar generator, also called the Faraday disk, is a low-voltage, high-current electric generator. It consists of a rotating conducting disk with one stationary brush (a sliding electrical contact) at its axle and another at a point on its circumference as shown in Figure P30.17. A uniform magnetic field is applied perpendicular to the plane of the disk. When superconducting coils are used to produce a large magnetic field, a homopolar generator can have a power output of several megawatts. Such a generator is useful, for example, in purifying metals by electrolysis. If a voltage is applied to the output terminals of the generator, it runs in reverse as a homopolar motor capable of providing great torque, useful in ship propulsion. At work the next morning, your supervisor tells you that the homopolar generator under consideration will have a magnetic field of magnitude B = 0.900 T and the radius of the disk is r = 0.400 m. The desired emf to be generated with the device is E = 25.0 V . Your supervisor asks you to determine the required angular speed of the disk to achieve this result.

Figure P30.17

Chapter 30, Problem 17P, You are working for a company that manufactures motors and generators. At the end of your first day

Blurred answer
Students have asked these similar questions
Jamal is playing with magnetic toy vehicles. He has two identical magnetic vehicles Car 1 and Car 2) on different sides of a center magnet that cannot move. His friend Simone challenges him to move one vehicle one space to the left or the right in order to get the largest increase in potential energy. That means Jamal can move Car 1 to point A or point B, or he can move Car 2 to point C or point D. Explain which movement Jamal should make (which car and which point), and why that movement will result in the largest increase in potential energy. Describe the magnetic force that will act on the vehicle he moves.
You are on a development team investigating a new design for computer magnetic disk drives. You have been asked to determine if the standard disk drive motor will be sufficient for the test version of the new disk. To do this you decide to calculate how much energy is needed to get the 6.4 cm diameter, 15 gram disk to its operating speed of 350 revolutions per second. The test disk also has 4 different sensors attached to its surface. These small sensors are arranged at the corners of a square with sides of 1.2 cm. To assure stability, the center of mass of the sensor array is in the same position as the center of mass of the disk. The disk’s axis of rotation also goes through the center of mass. You know that the sensors have masses of 1.0 grams, 1.5 grams, 2.0 grams, and 3.0 grams. The moment of inertia of your disk is one-half that of a ring.
A physics lab instructor is working on a new demonstration. She attaches two identical conducting balls with mass m = 0.190 g to threads of length L as shown in the figure. There are two strings in the figure. The top of each string is connected to the ceiling, and both strings are connected at the same point. The bottom of each string is connected to a spherical mass labeled m. Both strings have length Land hang at an angle of θto the vertical, with the two strings on opposite sides of the vertical. Both balls have the same charge of 7.60 nC, and are in static equilibrium when θ = 4.55°. What is L (in m)? Assume the threads are massless. Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the balls. Find an equation for the distance between the two balls in terms of L and θ, and use this expression in your Coulomb force equation. m (b) What If? The charge on both balls is increased until each thread makes an angle of θ = 9.10° with the…

Chapter 30 Solutions

Physics for Scientists and Engineers

Ch. 30 - A coil formed by wrapping 50 turns of wire in the...Ch. 30 - When a wire carries an AC current with a known...Ch. 30 - A toroid having a rectangular cross section (a =...Ch. 30 - A small airplane with a wingspan of 14.0 m is...Ch. 30 - A helicopter (Fig. P30.11) has blades of length...Ch. 30 - A 2.00-m length of wire is held in an eastwest...Ch. 30 - A metal rod of mass m slides without friction...Ch. 30 - Prob. 14PCh. 30 - Prob. 15PCh. 30 - An astronaut is connected to her spacecraft by a...Ch. 30 - You are working for a company that manufactures...Ch. 30 - You are working in a laboratory that uses motional...Ch. 30 - You are working in a factory that produces long...Ch. 30 - You are working in a factory that produces long...Ch. 30 - Within the green dashed circle show in Figure...Ch. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Figure P30.24 (page 820) is a graph of the induced...Ch. 30 - The rotating loop in an AC generator is a square...Ch. 30 - In Figure P30.26, a semicircular conductor of...Ch. 30 - Prob. 27PCh. 30 - Suppose you wrap wire onto the core from a roll of...Ch. 30 - A rectangular loop of area A = 0.160 m2 is placed...Ch. 30 - A rectangular loop of area A is placed in a region...Ch. 30 - A circular coil enclosing an area of 100 cm2 is...Ch. 30 - Consider the apparatus shown in Figure P30.32: a...Ch. 30 - A guitars steel string vibrates (see Fig. 30.5)....Ch. 30 - Why is the following situation impossible? A...Ch. 30 - A conducting rod of length = 35.0 cm is free to...Ch. 30 - Magnetic field values are often determined by...Ch. 30 - The plane of a square loop of wire with edge...Ch. 30 - In Figure P30.38, the rolling axle, 1.50 m long,...Ch. 30 - Figure P30.39 shows a stationary conductor whose...Ch. 30 - Prob. 40APCh. 30 - Figure P30.41 shows a compact, circular coil with...Ch. 30 - Review. In Figure P30.42, a uniform magnetic field...Ch. 30 - An N-turn square coil with side and resistance R...Ch. 30 - A conducting rod of length moves with velocity v...Ch. 30 - A long, straight wire carries a current given by I...Ch. 30 - A rectangular loop of dimensions and w moves with...Ch. 30 - A thin wire = 30.0 cm long is held parallel to...Ch. 30 - An induction furnace uses electromagnetic...Ch. 30 - Prob. 49CPCh. 30 - A betatron is a device that accelerates electrons...Ch. 30 - Review. The bar of mass m in Figure P30.51 is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY