Concept explainers
You are working for a company that manufactures motors and generators. At the end of your first day of work, your supervisor explains to you that you will be assigned to a team that is designing a new homopolar generator. You have no idea what that is, but agree wholeheartedly to the assignment. At home that evening, you go online to learn about the homopolar generator and find the following. The homopolar generator, also called the Faraday disk, is a low-voltage, high-current electric generator. It consists of a rotating
Figure P30.17
Trending nowThis is a popular solution!
Chapter 30 Solutions
Physics for Scientists and Engineers
- 5Carrow_forwardPlease answer each question with all requirements.arrow_forwardA bar magnet is attached solidly to a frictionless surface and its length is aligned with the x axis. To the right of the first magnet a short distance away is a second bar magnet with its center placed on the x axis and its length perpendicular to the x axis. The second magnet is free to move. Once placed in position at rest, which best describes the initial motion of the second magnet? O The magnet will move away from the fixed magnet. The magnet will not move. The magnet will start to rotate. O The magnet will move toward the fixed magnet.arrow_forward
- You may want to review (Page 796). For help with math skills, you may want to review: The Vector Cross Product 1 The Vector Cross Product 2 Figure P 1 of 1 Part A What is the strength of the magnetic field at point P in the figure? (Figure 1) Assume that I = 6.0 A, T1 = 1.1 cm, and r2 = 2.2 cm. Express your answer to two significant figures and include the appropriate units. B = 1 Submit Part B μà Value Request Answer Submil into the screen out of the screen What is the direction of the magnetic field at point P in the figure? Previous Answers Correct Units B ?arrow_forwardA conducting rod slides on two parallel conducting bars as shown below. The bars are connected through a 10 ohm resistor which has a voltmeter attached across it. The bars are separated by .15m in the y direction. A force F is applied to therod to keep the rodmoving in the x direction at constant speed of v=6m/s. A uniform B-field of B=3mT is perpendicular to the x-y plane and points into the page as shown. R= 3mT とミ/Sm R= 10L IN a) Determine the magnetic flux D(x) as a function of x. b) Calculate d®/dt in Wb/s c) Determine the magnitude of EMF measured by the voltmeter. d) Calculate the current through the resistor and its direction (CW or CCW). e) Determine the magnitude of the force required to pull rod. f) Determine the energy density stored in the B-field.arrow_forwardThe figure shows two closed paths wrapped around two conducting loops carrying currents i = 6.4 A and iz = 3.6 A. What is the value of the integral B ds for (a) path 1 and (b) path 2? D2arrow_forward
- According to the information. Can you solve the problem?arrow_forward(a) A 200-turn circular loop of radius SO.0 cm is vertical, with its axis on an east-west line. A current of 100 A circulates clockwise in the loop when viewed from the east. Earth’s field here is due north, parallel to the ground, with a strength of 3.0105T. What are the direction and magnitude of the torque on the loop? (b) Does this device have any practical applications as a motor?arrow_forwardThree long, current-carrying wires are parallel to one another and separated by a distance d. The magnitudes and directions of the currents are shown in Figure P30.91. Wires 1 and 3 are fixed, but wire 2 is free to move. Wire 2 is displaced to the right by a small distance x. Determine the net force (per unit length) acting on wire 2 and the angular frequency of the resulting oscillation. Assume the mass per unit length of wire 2 is and x d. FIGURE P30.91arrow_forward
- In Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forward(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by competing it with typical static electricity and noting that static is often absent.arrow_forwardA permanent magnet has a magnetic dipole moment of 0.160 A · m2. The magnet is in the presence of an external uniform magnetic field (provided by current-carrying coils) with a magnitude of 0.0800 T, which makes an angle of 29.0° with the orientation of the permanent magnet.(a)What is the magnitude of the torque (in N · m) on the permanent magnet? N.m (b)What is the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils? Jarrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College