Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 40AP
To determine
To show: The magnitude of emf generated between the ends of the rod is
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A conducting rod moves with a constant velocity in a direction perpendicular to a long, straight wire carrying a current I as shown in Figure P30.40. Show that the magnitude of the emf generated between the ends of the rod isChapter 30, Problem 40AP, A conducting rod moves with a constant velocity in a direction perpendicular to a long, straight , example 1In this case, note that the emf decreases with increasing r as you might expect.Figure P30.40Chapter 30, Problem 40AP, A conducting rod moves with a constant velocity in a perpendicular to a long, straight , example 2
30. A short wire runs along an x axis from x = a to x = -a
(Figure P30.30). At t = 0, there is a small sphere carry-
ing charge +9o at x = a and a small sphere carrying charge
-9o at x = -a. As the spheres discharge and a current is
established in the wire, show that, for t>0, the generalized
form of Ampère's law (Eq. 30.13) and the Biot-Savart law
(Eq. 28.12) give the same result for the magnitude of the mag-
netic field a distance b up the y axis. (Hint: Obtain the elec-
tric flux through a circular disk in the yz plane, centered at
the origin. Because the electric field is not constant over the
surface of the disk, you must divide the disk into a nested set
of rings of various radii and integrate. A representative ring
should have radius r and radial extent dr.) •..
Figure P30.30
b
-90
b. It has been suggested that birds might use the EMF induced between their
wing tips by the earth's magnetic field as a means of helping them navigate
during migration. What EMF would be induced for a Canada goose with a
wingspread of 1.5 m flying 10 m/s in a region where the vertical component
of the earth's field is 30 µT?
Chapter 30 Solutions
Physics for Scientists and Engineers
Ch. 30.1 - A circular loop of wire is held in a uniform...Ch. 30.2 - In Figure 30.8a, a given applied force of...Ch. 30.3 - Figure 30.12 Figure 30.12 shows a circular loop of...Ch. 30.5 - Prob. 30.4QQCh. 30 - A circular loop of wire of radius 12.0 cm is...Ch. 30 - An instrument based on induced emf has been used...Ch. 30 - Scientific work is currently under way to...Ch. 30 - A long solenoid has n = 400 turns per meter and...Ch. 30 - An aluminum ring of radius r1 = 5.00 cm and...Ch. 30 - An aluminum ring of radius r1 and resistance R is...
Ch. 30 - A coil formed by wrapping 50 turns of wire in the...Ch. 30 - When a wire carries an AC current with a known...Ch. 30 - A toroid having a rectangular cross section (a =...Ch. 30 - A small airplane with a wingspan of 14.0 m is...Ch. 30 - A helicopter (Fig. P30.11) has blades of length...Ch. 30 - A 2.00-m length of wire is held in an eastwest...Ch. 30 - A metal rod of mass m slides without friction...Ch. 30 - Prob. 14PCh. 30 - Prob. 15PCh. 30 - An astronaut is connected to her spacecraft by a...Ch. 30 - You are working for a company that manufactures...Ch. 30 - You are working in a laboratory that uses motional...Ch. 30 - You are working in a factory that produces long...Ch. 30 - You are working in a factory that produces long...Ch. 30 - Within the green dashed circle show in Figure...Ch. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Figure P30.24 (page 820) is a graph of the induced...Ch. 30 - The rotating loop in an AC generator is a square...Ch. 30 - In Figure P30.26, a semicircular conductor of...Ch. 30 - Prob. 27PCh. 30 - Suppose you wrap wire onto the core from a roll of...Ch. 30 - A rectangular loop of area A = 0.160 m2 is placed...Ch. 30 - A rectangular loop of area A is placed in a region...Ch. 30 - A circular coil enclosing an area of 100 cm2 is...Ch. 30 - Consider the apparatus shown in Figure P30.32: a...Ch. 30 - A guitars steel string vibrates (see Fig. 30.5)....Ch. 30 - Why is the following situation impossible? A...Ch. 30 - A conducting rod of length = 35.0 cm is free to...Ch. 30 - Magnetic field values are often determined by...Ch. 30 - The plane of a square loop of wire with edge...Ch. 30 - In Figure P30.38, the rolling axle, 1.50 m long,...Ch. 30 - Figure P30.39 shows a stationary conductor whose...Ch. 30 - Prob. 40APCh. 30 - Figure P30.41 shows a compact, circular coil with...Ch. 30 - Review. In Figure P30.42, a uniform magnetic field...Ch. 30 - An N-turn square coil with side and resistance R...Ch. 30 - A conducting rod of length moves with velocity v...Ch. 30 - A long, straight wire carries a current given by I...Ch. 30 - A rectangular loop of dimensions and w moves with...Ch. 30 - A thin wire = 30.0 cm long is held parallel to...Ch. 30 - An induction furnace uses electromagnetic...Ch. 30 - Prob. 49CPCh. 30 - A betatron is a device that accelerates electrons...Ch. 30 - Review. The bar of mass m in Figure P30.51 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A conducting rod of length moves with velocity v parallel to a long wire carrying a steady current I. The axis of the rod is maintained perpendicular to the wire with the near end a distance r away (Fig. P30.44). Show that the magnitude of the emf induced in the rod is E=0Iv2ln(1+lr) Figure P30.44arrow_forwardThe magnetic field through a square loop of wire with sides of length 3.00 cm changes with time as shown in Figure P32.8, where the sign indicates the direction of the field relative to the axis of the loop. Plot the emf induced in the loop versus time. FIGURE P32.8arrow_forwardA Figure P32.74 shows an N-turn rectangular coil of length a and width b entering a region of uniform magnetic field of magnitude Bout directed out of the page. The velocity of the coil is constant and is upward in the figure. The total resistance of the coil is R. What are the magnitude and direction of the magnetic force on the coil a. when only a portion of the coil has entered the region with the field, b. when the coil is completely embedded in the field, and c. as the coil begins to exit the region with the field?arrow_forward
- A loop of wire in the shape of a rectangle of width w and length L and a long, straight wire carrying a current I lie on a tabletop as shown in Figure P23.7. (a) Determine the magnetic flux through the loop due to the current I. (b) Suppose the current is changing with time according to I = a + bt, where a and b are constants. Determine the emf that is induced in the loop if b = 10.0 A/s, h = 1.00 cm, w = 10.0 cm, and L = 1.00 m. (c) What is the direction of the induced current in the rectangle? Figure P23.7arrow_forwardFigure P30.39 shows a stationary conductor whose shape is similar to the letter e. The radius of its circular portion is a = 50.0 cm. It is placed in a constant magnetic field of 0.500 T directed out of the page. A straight conducting rod, 50.0 cm long, is pivoted about point O and rotates with a constant angular speed of 2.00 rad/s. (a) Determine the induced emf in the loop POQ. Note that the area of the loop is a2/2. (b) If all the conducting material has a resistance per length of 5.00 /m, what is the induced current in the loop POQ at the instant 0.250 s after point P passes point Q? Figure P30.39arrow_forwardReview. In Figure P30.42, a uniform magnetic field decreases at a constant rate dB/dt = K, where K is a positive constant. A circular loop of wire of radius a containing a resistance R and a capacitance C is placed with its plane normal to the field. (a) Find the charge Q on the capacitor when it is fully charged. (b) Which plate, upper or lower, is at the higher potential? (c) Discuss the force that causes the separation of charges. Figure P30.42arrow_forward
- A cube of edge length l=2.50 cm is positioned as shown in Figure P30.47. A uniform magnetic field given by B = (5 i + 4j + 3k) T exists throughout the region. (a) Calculate the magnetic flux through the shaded face. (b) What is the total flux through the six faces?arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forward(a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forward
- Two circular conductors are perpendicular to each other as shown in Figure P32.29. Suppose conductor B carries a current. Will a current be induced in conductor A if there is a change in the current in conductor B? (The loops are insulated from one another.) Figure P32.29arrow_forwardA thin wire = 30.0 cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I = 200 A and fixed in position (Fig. P30.47). The 30.0-cm wire is released at the instant t = 0 and falls, remaining parallel to the current-carrying wire as it falls. Assume the falling wire accelerates at 9.80 m/s2. (a) Derive an equation for the emf induced in it as a function of time. (b) What is the minimum value of the emf? (c) What is the maximum value? (d) What is the induced emf 0.300 s after the wire is released? Figure P30.47arrow_forwardFigure P23.58 is a graph of the induced emf versus time for a coil of N turns rotating with angular speed ω in a uniform magnetic field directed perpendicular to the coil’s axis of rotation. What If? Copy this sketch (on a larger scale) and on the same set of axes show the graph of emf versus t (a) if the number of turns in the coil is doubled, (b) if instead the angular speed is doubled, and (c) if the angular speed is doubled while the number of turns in the coil is halved. Figure P23.58arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning