Explanation of Solution
Description of the TCP link to always be busy with sending data:
- Consider the maximum window size is “W”.
- Buffer size is “S”.
- Round trip time “RTT” to send data packets through TCP connection.
If the window size reaches “W” then loss occurs on packet. When loss occurs the sender changes the size from “W” to “W/2” which means the sender will cut its congestion window size by half.
After reducing the size, the sender waits for the acknowledgement (ACK) of “W/2” outstanding packets before it starts sending data segments again.
The link can be busy, if it sends the data in the period “W/ (2×C)” which means the time period is equal to interval where the sender is waiting for the ACK of the W/2 outstanding packets. Thus, “S/C must be no less than W/ (2×C)”.
Therefore,
Now, consider the one way propagation delay between sender and receiver is Tp
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Computer Networking: A Top-Down Approach (7th Edition)
- On a multiple-choice exam, there are 4 possible answers for each of the 6 questions. If a student answers the questions by random guesses, (a) What is the probability that he would get exactly 3 correct answers? (b) What is the probability that he would get at least 1 correct answer? (c) If this problem is solved using a binomial random variable, what would the binomial parameters be?arrow_forwardWhat is the difference between diode clipping and clamping circuits?arrow_forward4. Design a Positive Clamper circuit to obtain the given output waveform. Plot the corresponding input signal. Assume all diodes are ideal. (You do not need to specify the C or R values). V out 5 50 0 -11 |arrow_forward
- 3. Plot the input and output waveforms for the given circuit. What is the difference between the given circuit and double Zener clipping circuits? Assume all diodes are ideal. R=100 Q V=8sin(2000*pi*t) D2 D1 R₂=10k Q V out V=2V de1 dc2 V₁ =5Varrow_forward2. Plot the expected output voltage waveforms for the given circuits and specify the type of the circuit according to your result (positive/negative clipper). Assume all diodes are ideal. (a) V in R (b) DI w in de V out V 0 R out -V 0 out in out dearrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward- | العنوان I need a detailed drawing with explanation so A 4 شكا +x-pu +965 Taylor Series Approximation Example- H.W More terms used implies better approximation f(x)+ f(x) Zero order First order 1.0 0.5 x-0 Second order True f(x) f(x) • flx;+ 1) = f(x) + fƒ '\x;}h √(x,+ 1) = f(x) + f (x)h + "(x) 2 f(x1) X+1-1 f(x) 0.1x 0.15x³-0.5x²-0.25x+1.2 Taylor Series Approximation H.w: Smaller step size implies smaller error Errors 100+ F(x) Zero order First order Second order 0.5 Reduced step size 0 x, 0 f(x+1)f(x,) + ƒ\x,}h 51 f(x + 1) − f(x) + (x)+2 ((x1) +1-1 Using Taylor Series Expansion estimate f(1.35) with x0 =0.75 with 5 iterations (or & s= 5%) for f(x) 0.1x 0.15x³-0.5x2- 0.25x+1.2 マ 52arrow_forwardHome Work Use Taylor's series expansion to Compute the true and approximate percent relative errors & and εa for x = π/6, use 6 iterations for the series. sin(x) == x-arrow_forward
- Computer Networking: A Top-Down Approach (7th Edi...Computer EngineeringISBN:9780133594140Author:James Kurose, Keith RossPublisher:PEARSONComputer Organization and Design MIPS Edition, Fi...Computer EngineeringISBN:9780124077263Author:David A. Patterson, John L. HennessyPublisher:Elsevier ScienceNetwork+ Guide to Networks (MindTap Course List)Computer EngineeringISBN:9781337569330Author:Jill West, Tamara Dean, Jean AndrewsPublisher:Cengage Learning
- Concepts of Database ManagementComputer EngineeringISBN:9781337093422Author:Joy L. Starks, Philip J. Pratt, Mary Z. LastPublisher:Cengage LearningPrelude to ProgrammingComputer EngineeringISBN:9780133750423Author:VENIT, StewartPublisher:Pearson EducationSc Business Data Communications and Networking, T...Computer EngineeringISBN:9781119368830Author:FITZGERALDPublisher:WILEY